100+ datasets found
  1. Network Traffic Dataset

    • kaggle.com
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ravikumar Gattu (2023). Network Traffic Dataset [Dataset]. https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ravikumar Gattu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

    The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.

    Content :

    This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.

    The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).

    Dataset Columns:

    No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance

    Acknowledgements :

    I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.

    Ravikumar Gattu , Susmitha Choppadandi

    Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).

    **Dataset License: ** CC0: Public Domain

    Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

    ML techniques benefits from this Dataset :

    This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :

    1. Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.

    2. Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.

    3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.

  2. a

    Traffic Flow Data Jan to June 2023 SDCC

    • hub.arcgis.com
    • data.gov.ie
    • +1more
    Updated Jul 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    South Dublin County Council (2023). Traffic Flow Data Jan to June 2023 SDCC [Dataset]. https://hub.arcgis.com/maps/sdublincoco::traffic-flow-data-jan-to-june-2023-sdcc
    Explore at:
    Dataset updated
    Jul 4, 2023
    Dataset authored and provided by
    South Dublin County Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.

  3. C

    City of Pittsburgh Traffic Count

    • data.wprdc.org
    • datasets.ai
    csv, geojson
    Updated Jun 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2024). City of Pittsburgh Traffic Count [Dataset]. https://data.wprdc.org/dataset/traffic-count-data-city-of-pittsburgh
    Explore at:
    csv, geojson(421434)Available download formats
    Dataset updated
    Jun 9, 2024
    Dataset authored and provided by
    City of Pittsburgh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Pittsburgh
    Description

    This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.

    Data is currently available for only the most-recent count at each location.

    Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.

    Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.

    Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.

    Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.

    NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.

  4. D

    Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Real Time Traffic Data Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/real-time-traffic-data-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Real Time Traffic Data Market Outlook



    The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.



    The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.



    Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.



    Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.



    The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.



    Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.



    Component Analysis



    The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems

  5. d

    Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C...

    • datarade.ai
    .csv, .xls
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2025). Web Traffic Data | 500M+ US Web Traffic Data Resolution | B2B and B2C Website Visitor Identity Resolution [Dataset]. https://datarade.ai/data-products/traffic-continuum-from-solution-publishing-500m-us-web-traf-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Unlock the Potential of Your Web Traffic with Advanced Data Resolution

    In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.

    Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.

    Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.

    Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.

    Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.

    Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.

    Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.

    Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.

    How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:

    Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.

    Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.

    Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.

    Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.

    Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.

    Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...

  6. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  7. d

    City of Pittsburgh Traffic Count

    • catalog.data.gov
    Updated Jan 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2023). City of Pittsburgh Traffic Count [Dataset]. https://catalog.data.gov/dataset/city-of-pittsburgh-traffic-count
    Explore at:
    Dataset updated
    Jan 24, 2023
    Dataset provided by
    City of Pittsburgh
    Area covered
    Pittsburgh
    Description

    This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH. Data is currently available for only the most-recent count at each location. Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds. Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests. Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles. Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data. NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.

  8. d

    Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™, Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US [Dataset]. https://datarade.ai/data-products/visitiq-web-traffic-data-cookieless-first-party-opt-in-p-visitiq
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    Be ready for a cookieless internet while capturing anonymous website traffic data!

    By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.

    This product will include Anonymous IP Data and Web Traffic Data for B2B2C.

    Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.

    Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.

    Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.

    Check our product that has the most accurate Web Traffic Data for the B2B2C market.

  9. f

    A unified and validated traffic dataset for 20 U.S. cities

    • figshare.com
    zip
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma (2024). A unified and validated traffic dataset for 20 U.S. cities [Dataset]. http://doi.org/10.6084/m9.figshare.24235696.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 31, 2024
    Dataset provided by
    figshare
    Authors
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).

  10. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Honig, Joshua
    Chan-Tin, Eric
    Homan, Sophia
    Moran, Madeline
    Soni, Shreena
    Ferrell, Nathan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  11. G

    Traffic flow

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, geojson, gpkg +5
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Traffic flow [Dataset]. https://open.canada.ca/data/en/dataset/c77c495a-2a4c-447e-9184-25722289007f
    Explore at:
    geojson, gpkg, shp, wfs, html, pdf, csv, wmsAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying a section of traffic à la carte with a click (the file links are displayed in the descriptive table that is displayed when clicking): • Historical aggregated data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  12. Z

    Data from: CESNET-QUIC22: A large one-month QUIC network traffic dataset...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukačovič, Andrej (2024). CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7409923
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Lukačovič, Andrej
    Hynek, Karel
    Čejka, Tomáš
    Šiška, Pavel
    Luxemburk, Jan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size:

    W-2022-44

    Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45

    Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46

    Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47

    Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22

    Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M

    Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list below. For each flow data file, there is a JSON file with the number of saved and seen (before sampling) flows per service and total counts of all received (observed on the CESNET2 network), service (belonging to one of the dataset's services), and saved (provided in the dataset) flows. There is also the stats-week.json file aggregating flow counts of a whole week and the stats-dataset.json file aggregating flow counts for the entire dataset. Flow counts before sampling can be used to compute sampling ratios of individual services and to resample the dataset back to the original service distribution. Moreover, various dataset statistics, such as feature distributions and value counts of QUIC versions and user agents, are provided in the dataset-statistics folder. The mapping between services and service providers is provided in the servicemap.csv file, which also includes SNI domains used for ground truth labeling. The following list describes flow data fields in CSV files:

    ID: Unique identifier SRC_IP: Source IP address DST_IP: Destination IP address DST_ASN: Destination Autonomous System number SRC_PORT: Source port DST_PORT: Destination port PROTOCOL: Transport protocol QUIC_VERSION QUIC: protocol version QUIC_SNI: Server Name Indication domain QUIC_USER_AGENT: User agent string, if available in the QUIC Initial Packet TIME_FIRST: Timestamp of the first packet in format YYYY-MM-DDTHH-MM-SS.ffffff TIME_LAST: Timestamp of the last packet in format YYYY-MM-DDTHH-MM-SS.ffffff DURATION: Duration of the flow in seconds BYTES: Number of transmitted bytes from client to server BYTES_REV: Number of transmitted bytes from server to client PACKETS: Number of packets transmitted from client to server PACKETS_REV: Number of packets transmitted from server to client PPI: Packet metadata sequence in the format: [[inter-packet times], [packet directions], [packet sizes]] PPI_LEN: Number of packets in the PPI sequence PPI_DURATION: Duration of the PPI sequence in seconds PPI_ROUNDTRIPS: Number of roundtrips in the PPI sequence PHIST_SRC_SIZES: Histogram of packet sizes from client to server PHIST_DST_SIZES: Histogram of packet sizes from server to client PHIST_SRC_IPT: Histogram of inter-packet times from client to server PHIST_DST_IPT: Histogram of inter-packet times from server to client APP: Web service label CATEGORY: Service category FLOW_ENDREASON_IDLE: Flow was terminated because it was idle FLOW_ENDREASON_ACTIVE: Flow was terminated because it reached the active timeout FLOW_ENDREASON_OTHER: Flow was terminated for other reasons

    Link to other CESNET datasets

    https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/ https://github.com/CESNET/cesnet-datazoo Please cite the original data article:

    @article{CESNETQUIC22, author = {Jan Luxemburk and Karel Hynek and Tomáš Čejka and Andrej Lukačovič and Pavel Šiška}, title = {CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines}, journal = {Data in Brief}, pages = {108888}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.108888}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923000069} }

  13. d

    Historic Traffic Data - Datasets - data.wa.gov.au

    • catalogue.data.wa.gov.au
    Updated Jun 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Historic Traffic Data - Datasets - data.wa.gov.au [Dataset]. https://catalogue.data.wa.gov.au/dataset/mrwa-historic-traffic-data
    Explore at:
    Dataset updated
    Jun 25, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NOTE: The Historic Traffic Data Dashboard & Feature Hosted Service have been retired.Network operations traffic data from Main Roads Western Australia for 2015 to 2019. The data provided includes data collected on the Perth Metropolitan State Road Network (PMSRN) at 15 minute intervals. The Historic Traffic Data is provided in CSV format per year. Each table has over 34 million rows and can be linked to the M-Links Road Network using the M-Links ID. A data dictionary for M-Links Road Network and the Historic Traffic Data is at the following link:https://bit.ly/2S86uSnNetwork Operations traffic data can also be accessed via the Daily Traffic Data API at the following link: https://bit.ly/34ZsyAK The network operations traffic data provided here is of variable quality and has not been checked, quality assured or manually corrected. An automated process is used to patch over missing or suspect data with the most representative data available within the database. Patches may be reapplied as new data becomes available and patched data may change over time. Note that you are accessing this data pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes. Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”

  14. Uber Traffic Data Visualization

    • kaggle.com
    zip
    Updated Feb 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shobhit Srivastava (2019). Uber Traffic Data Visualization [Dataset]. https://www.kaggle.com/datasets/shobhit18th/uber-traffic-data-visualization
    Explore at:
    zip(113207 bytes)Available download formats
    Dataset updated
    Feb 27, 2019
    Authors
    Shobhit Srivastava
    Description

    Context

    Well,the data is taken form the machine hack site.It leads us to the problem of finding the traffic problems in the metro cities. It is also about how to regulate the movement of the cabs so as to get control over the traffic problems.

    Content

    Modern cities are changing. The rise of vehicular traffic has been changing the design of our cities. It is very important to know how traffic moves in a city and how it changes during different times in a week. Hence it is very important to analyse and gain insights from traffic data. We invite data scientists, analysts and people from all technical interests to analyse the traffic data from Bengaluru. The data gives us some information about how traffic moves from source to destination under various circumstances. The data is sourced from Uber Movement. Uber Movement provides anonymized data from over two billion trips to help urban planning around the world.

    Acknowledgements

    1. Machine Hack

    Inspiration

    1. How can we manage day to day traffic ? 2 .How the moments of cabs to be regulated ?
    2. Awareness about the Use of public transport.
  15. d

    Mill Road Project: Traffic Sensor Data

    • findtransportdata.dft.gov.uk
    Updated Oct 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Cambridge (2020). Mill Road Project: Traffic Sensor Data [Dataset]. https://findtransportdata.dft.gov.uk/dataset/mill-road-project:-traffic-sensor-data-177f76b38b2
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    Smart Cambridge
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    15 smart sensors were installed on Mill Road and surrounding streets to record numbers of pedestrians, bicycles, cars and other vehicles. The data being collated and analysed by the Smart Cambridge programme will help the Greater Cambridge Partnership understand how people use the road network.

    Data will be released monthly for these locations until the end of 2020. Please note that due to the level of insight that can be gained from these sensors, additional sensors in more locations have been installed in Cambridge since the summer of 2019. Some sensors will remain beyond 2020 in strategic locations and the network is expected to grow. Data for those more permanent sites, outside of the Mill Road project will be published here: https://data.cambridgeshireinsight.org.uk/dataset/cambridge-city-smart-s...

    Mill Road Bridge was closed for eight weeks from 1 July 2019 for crucial work being carried out to improve rail services. Pedestrians and cyclists will still be able to cross the railway for most of the working time.

    A high concentration of sensors were installed for approximately 18 months to gather data before the closure, during the time when there is no vehicle traffic coming over Mill Road Bridge and then after the bridge is re-opened. This has allowed engineers to see the impact of the closure on surrounding roads, including on air quality. Keeping the sensors in place for this long has also allowed teams to make greater comparisons, by taking in to account daily, weekly, monthly and annual variations in traffic levels.

    The below data release offers counts for each sensor over 1 hour periods. The curent data covers the period 03/06/2019 to 13/12/2020.

    Hourly counts are broken down by inbound and outbound journeys. .

    Counts are also broken down by vehicle type. This includes:

    Pedestrians Cyclists Buses LGV OGV 1 OGV 2 The release also includes a full list of sensor sites with geographic point location data.

  16. C

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • data.cityofchicago.org
    • datadiscoverystudio.org
    • +4more
    csv, xlsx, xml
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Se/n4j6-wkkf
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic.

    Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  17. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  18. a

    Real Time Traffic Volume and Speed Current All Directions TDA

    • mapdirect-fdep.opendata.arcgis.com
    • gis-fdot.opendata.arcgis.com
    • +1more
    Updated Apr 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2020). Real Time Traffic Volume and Speed Current All Directions TDA [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/datasets/e33f71f172d24c1c89487ede81a4dcbb
    Explore at:
    Dataset updated
    Apr 6, 2020
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    The real_time_current data shows the most recent avalable real-time traffic volumes and observed travel speeds on a selected set of roadways in the state. While the real_time feature class shows a collection of the most recent 2 days worth of polling data, this datset shows only the most recent polling data for each site. Keep in mind that if a site is malfunctioning its time stamp might be different than those for sites that are fully operational. Real-time polling is activated for a hurricane or other emergencies in Florida. This dataset is maintained by the Transportation Data & Analytics office (TDA). This hosted feature layer was updated on: 10-03-2025 16:35:05.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/special_projects/real_time/real_time_current.zip

  19. D

    Traffic Counts Studies by Type

    • data.seattle.gov
    • cos-data.seattle.gov
    • +2more
    csv, xlsx, xml
    Updated Oct 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SDOT Traffic Counts Group (2025). Traffic Counts Studies by Type [Dataset]. https://data.seattle.gov/Transportation/Traffic-Counts-Studies-by-Type/s72h-pqjm
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    SDOT Traffic Counts Group
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This table provides the type of study performed, for better understanding of the data. Studies can be performed for multiple reasons and will show up multiple times in this table. The SDOT Traffic Counts group runs studies across the city to collect traffic volumes. Most studies are done with pneumatic tubes, but some come from video systems as well. Use the field study_id to match it with other tables for more information.

  20. Traffic Volume and Classification in Massachusetts

    • mass.gov
    Updated Sep 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Department of Transportation (2017). Traffic Volume and Classification in Massachusetts [Dataset]. https://www.mass.gov/traffic-volume-and-classification-in-massachusetts
    Explore at:
    Dataset updated
    Sep 18, 2017
    Dataset authored and provided by
    Massachusetts Department of Transportationhttp://www.massdot.state.ma.us/
    Area covered
    Massachusetts
    Description

    A collection of historic traffic count data and guidelines for how to collect new data for Massachusetts Department of Transportation (MassDOT) projects.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ravikumar Gattu (2023). Network Traffic Dataset [Dataset]. https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
Organization logo

Network Traffic Dataset

Use this Dataset for analysis the network traffic and designing the applications

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 31, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Ravikumar Gattu
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.

Content :

This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.

The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).

Dataset Columns:

No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance

Acknowledgements :

I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.

Ravikumar Gattu , Susmitha Choppadandi

Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).

**Dataset License: ** CC0: Public Domain

Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

ML techniques benefits from this Dataset :

This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :

  1. Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.

  2. Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.

3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.

Search
Clear search
Close search
Google apps
Main menu