The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)
United States Census Bureau
SELECT
zipcode,
population
FROM
bigquery-public-data.census_bureau_usa.population_by_zip_2010
WHERE
gender = ''
ORDER BY
population DESC
LIMIT
10
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data
Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change; for the United States, States, Metropolitan Statistical Areas, Micropolitan Statistical Areas, Counties, and Puerto Rico: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through March. // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // The Office of Management and Budget's statistical area delineations for metropolitan, micropolitan, and combined statistical areas, as well as metropolitan divisions, are those issued by that agency in September 2018. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Households not paying cash rent are excluded from the calculation of median gross rent..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.
Exploring the data and making maps could be quite interesting as well.
This dataset contains two CSV files:
nyc_census_tracts.csv
This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.
I obtained data for individual census tracts, which typically contain several thousand residents.
census_block_loc.csv
For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing
New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
with the state and county names to make things a bit more readable to users.
Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.
The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).
The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)
As public data from the US government, this is not subject to copyright within the US and should be considered public domain.
This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2022 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..In 2016, changes were made to the languages and language categories presented in tables B16001, C16001, and B16002. For more information, see: 2016 Language Data User note..The 2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
USE geoid TO JOIN DATA DOWNLOADED FROM DATA.CENSUS.GOV The TIGER/Line Shapefiles are extracts of selected geographic and cartographic information from the Census Bureau's Master Address File (MAF)/Topologically Integrated Geographic Encoding and Referencing (TIGER) System (MTS). The TIGER/Line Shapefiles contain a standard geographic identifier (GEOID) for each entity that links to the GEOID in the data from censuses and surveys. The TIGER/Line Shapefiles do not include demographic data from surveys and censuses (e.g., Decennial Census, Economic Census, American Community Survey, and the Population Estimates Program). Other, non-census, data often have this standard geographic identifier as well. Data from many of the Census Bureau’s surveys and censuses, including the geographic codes needed to join to the TIGER/Line Shapefiles, are available at the Census Bureau’s public data dissemination website (https://data.census.gov/). Block Groups (BGs) are statistical divisions of census tracts, are generally defined to contain between 600 and 3,000 people, and are used to present data and control block numbering. A block group consists of clusters of blocks within the same census tract that have the same first digit of their four-digit census block number. For example, blocks 3001, 3002, 3003, . . . , 3999 in census tract 1210.02 belong to BG 3 in that census tract. Most BGs were delineated by local participants in the Census Bureau’s Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where a local or tribal government declined to participate in PSAP, and a regional organization or the State Data Center was not available to participate. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within the census tract. Within the standard census geographic hierarchy, BGs never cross state, county, or census tract boundaries, but may cross the boundaries of any other geographic entity. Tribal census tracts and tribal BGs are separate and unique geographic areas defined within federally recognized American Indian reservations and can cross state and county boundaries (see “Tribal Census Tract” and “Tribal Block Group”). The tribal census tracts and tribal block groups may be completely different from the standard county-based census tracts and block groups defined for the same area. Downloaded from https://www2.census.gov/geo/tiger/TIGER2022/BG/ on June 22, 2023
This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient numbe...
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
https://www.icpsr.umich.edu/web/ICPSR/studies/39413/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39413/terms
The American Community Survey (ACS), conducted by the U.S. Census Bureau, replaced the long form of the decennial census in 2000. The ACS allows researchers, policy makers, and others access to timely information about the U.S. population to make decisions about infrastructure and distribution of federal funds. The monthly survey is sent to a sample of approximately 3.5 million U.S. addresses, including the District of Columbia and Puerto Rico. The ACS includes questions on topics not included in the decennial census, such as those about occupations and employment, education, and key areas of infrastructure like internet access and transportation. When studying large geographic areas, such as states, researchers can use a single year's worth of ACS data to create population-level estimates. However, the study of smaller groups of the population, such as those employed in arts-related fields, requires additional data for more accurate estimation. Specifically, researchers often use 5-year increments of ACS data to draw conclusions about smaller geographies or slices of the population. Note, the Census Bureau produced 3-year estimates between 2005 and 2013 (resulting in seven files: 2005-2007, 2006-2008, 2007-2009, . . . 2011-2013), which remain available but no additional 3-year estimate files have been created. Individuals wishing to describe people working in occupations related to the arts or culture should plan to use at least five years' worth of data to generate precise estimates. When selecting data from the U.S. Census Bureau or IPUMS USA, users should select data collected over 60 months, such as 2020-2024. NADAC's Guide to Creating Artist Extracts and Special Tabulations of Artists from the American Community Survey provides information about the occupation codes used to identify artists.
US Census American Community Survey Custom Tabulation (ST542) by Census Tract. Language spoken at home for population 5 years and over by ability to speak English, summarized by census tract for 114 languages spoken across LA County, 5-year estimates 2019-2023.See also source data tables:Census Tracts: Language Spoken at Home LA County Census TractsLA County: Language Spoken at Home LA County Headings:GEOIDGeography identificationCT20Census tract (2020)NameCensus tract nameCSACountywide Statistical Area (city or community)SPAService Planning AreaSDSupervisorial Districttotal_popPopulation over 5 years old in census tract (universe)total_limited_engPopulation that speaks English less than "very well"total_limited_eng_pctPercent of population that speaks English less than "very well"
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin; for the United States, States, Counties; and for Puerto Rico and its Municipios: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.
This layer shows Computers and Internet Use. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the american community survey (acs) with r and monetdb experimental. think of the american community survey (acs) as the united states' census for off-years - the ones that don't end in zero. every year, one percent of all americans respond, making it the largest complex sample administered by the u.s. government (the decennial census has a much broader reach, but since it attempts to contact 100% of the population, it's not a sur vey). the acs asks how people live and although the questionnaire only includes about three hundred questions on demography, income, insurance, it's often accurate at sub-state geographies and - depending how many years pooled - down to small counties. households are the sampling unit, and once a household gets selected for inclusion, all of its residents respond to the survey. this allows household-level data (like home ownership) to be collected more efficiently and lets researchers examine family structure. the census bureau runs and finances this behemoth, of course. the dow nloadable american community survey ships as two distinct household-level and person-level comma-separated value (.csv) files. merging the two just rectangulates the data, since each person in the person-file has exactly one matching record in the household-file. for analyses of small, smaller, and microscopic geographic areas, choose one-, three-, or fiv e-year pooled files. use as few pooled years as you can, unless you like sentences that start with, "over the period of 2006 - 2010, the average american ... [insert yer findings here]." rather than processing the acs public use microdata sample line-by-line, the r language brazenly reads everything into memory by default. to prevent overloading your computer, dr. thomas lumley wrote the sqlsurvey package principally to deal with t his ram-gobbling monster. if you're already familiar with syntax used for the survey package, be patient and read the sqlsurvey examples carefully when something doesn't behave as you expect it to - some sqlsurvey commands require a different structure (i.e. svyby gets called through svymean) and others might not exist anytime soon (like svyolr). gimme some good news: sqlsurvey uses ultra-fast monetdb (click here for speed tests), so follow the monetdb installation instructions before running this acs code. monetdb imports, writes, recodes data slowly, but reads it hyper-fast . a magnificent trade-off: data exploration typically requires you to think, send an analysis command, think some more, send another query, repeat. importation scripts (especially the ones i've already written for you) can be left running overnight sans hand-holding. the acs weights generalize to the whole united states population including individuals living in group quarters, but non-residential respondents get an abridged questionnaire, so most (not all) analysts exclude records with a relp variable of 16 or 17 right off the bat. this new github repository contains four scripts: 2005-2011 - download all microdata.R create the batch (.bat) file needed to initiate the monet database in the future download, unzip, and import each file for every year and size specified by the user create and save household- and merged/person-level replicate weight complex sample designs create a well-documented block of code to re-initiate the monet db server in the future fair warning: this full script takes a loooong time. run it friday afternoon, commune with nature for the weekend, and if you've got a fast processor and speedy internet connection, monday morning it should be ready for action. otherwise, either download only the years and sizes you need or - if you gotta have 'em all - run it, minimize it, and then don't disturb it for a week. 2011 single-year - analysis e xamples.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file perform the standard repertoire of analysis examples, only this time using sqlsurvey functions 2011 single-year - variable reco de example.R run the well-documented block of code to re-initiate the monetdb server copy the single-year 2011 table to maintain the pristine original add a new age category variable by hand add a new age category variable systematically re-create then save the sqlsurvey replicate weight complex sample design on this new table close everything, then load everything back up in a fresh instance of r replicate a few of the census statistics. no muss, no fuss replicate census estimates - 2011.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file match every nation wide statistic on the census bureau's estimates page, using sqlsurvey functions click here to view these four scripts for more detail about the american community survey (acs), visit: < ul> the us census...
https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
This dataset contains data from the P.L. 94-171 2020 Census Redistricting Program. The 2020 Census Redistricting Data Program provides states the opportunity to delineate voting districts and to suggest census block boundaries for use in the 2020 Census redistricting data tabulations (Public Law 94-171 Redistricting Data File). In addition, the Redistricting Data Program will periodically collect state legislative and congressional district boundaries if they are changed by the states. The program is also responsible for the effective delivery of the 2020 Census P.L. 94-171 Redistricting Data statutorily required by one year from Census Day. The program ensures continued dialogue with the states in regard to 2020 Census planning, thereby allowing states ample time for their planning, response, and participation. The U.S. Census Bureau will deliver the Public Law 94-171 redistricting data to all states by Sept. 30, 2021. COVID-19-related delays and prioritizing the delivery of the apportionment results delayed the Census Bureau’s original plan to deliver the redistricting data to the states by April 1, 2021.
Data in this dataset contains information on population, diversity, race, ethnicity, housing, household, vacancy rate for 2020 for various geographies (county, MCD, Philadelphia Planning Districts (referred to as county planning areas [CPAs] internally, Census designated places, tracts, block groups, and blocks)
For more information on the 2020 Census, visit https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
PLEASE NOTE: 2020 Decennial Census data has had noise injected into it because of the Census's new Disclosure Avoidance System (DAS). This can mean that population counts and characteristics, especially when they are particularly small, may not exactly correspond to the data as collected. As such, caution should be exercised when examining areas with small counts. Ron Jarmin, acting director of the Census Bureau posted a discussion of the redistricting data, which outlines what to expect with the new DAS. For more details on accuracy you can read it here: https://www.census.gov/newsroom/blogs/director/2021/07/redistricting-data.html
https://www.icpsr.umich.edu/web/ICPSR/studies/38777/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38777/terms
The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files are an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code). The NMF was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The NMF consists of the full set of privacy-protected statistical queries (counts of individuals or housing units with particular combinations of characteristics) of confidential 2010 Census data relating to the redistricting data portion of the 2010 Demonstration Data Products Suite - Redistricting and Demographic and Housing Characteristics File - Production Settings (2023-04-03). These statistical queries, called "noisy measurements" were produced under the zero-Concentrated Differential Privacy framework (Bun, M. and Steinke, T [2016]; see also Dwork C. and Roth, A. [2014]) implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023]), which added positive or negative integer-valued noise to each of the resulting counts. The noisy measurements are an intermediate stage of the TDA prior to the post-processing the TDA then performs to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these 2010 Census demonstration data to enable data users to evaluate the expected impact of disclosure avoidance variability on 2020 Census data. The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files (2023-04-03) have been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). The data include zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2010 Census Edited File (CEF), which includes confidential data initially collected in the 2010 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) (https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product- planning/2010-demonstration-data-products/04 Demonstration_Data_Products_Suite/2023-04-03/). As these 2010 Census demonstration data are intended to support study of the design and expected impacts of the 2020 Disclosure Avoidance System, the 2010 CEF records were pre-processed before application of the zCDP framework. This pre-processing converted the 2010 CEF records into the input-file format, response codes, and tabulation categories used for the 2020 Census, which differ in substantive ways from the format, response codes, and tabulation categories originally used for the 2010 Census. The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics, including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence, after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints--information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) --are provided. These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a MD iMAP hosted service. Find more information at http://imap.maryland.gov. The units of geography used for the 2010 Census maps displayed here are the Census tracts. Census tracts generally have a population size between 1 - 200 and 8 - 000 people - with an optimum size of 4 - 000 people. When first delineated - census tracts were designed to be homogeneous with respect to population characteristics - economic status - and living conditions. Census tract boundaries generally follow visible and identifiable features. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances - a census tract may consist of noncontiguous areas. The data collected on the short form survey are general demographic characteristics such as age - race - ethnicity - household relationship - housing vacancy and tenure (owner/renter).Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/Demographics/MD_CensusData/FeatureServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
2013-2023 Virginia Population by Age by Language Spoken at Home by Ability to Speak English for the Population 5 years and over by Census Block Group. Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B16004 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
https://www.icpsr.umich.edu/web/ICPSR/studies/8251/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8251/terms
This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation.
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)
United States Census Bureau
SELECT
zipcode,
population
FROM
bigquery-public-data.census_bureau_usa.population_by_zip_2010
WHERE
gender = ''
ORDER BY
population DESC
LIMIT
10
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data