Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States increased to 6.72 percent in July 10 from 6.67 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France Mortgage Rate: Avg: Consumer: Up to 1 Year data was reported at 3.780 % in Mar 2025. This records an increase from the previous number of 3.750 % for Feb 2025. France Mortgage Rate: Avg: Consumer: Up to 1 Year data is updated monthly, averaging 3.120 % from Jan 2003 (Median) to Mar 2025, with 267 observations. The data reached an all-time high of 5.380 % in Dec 2008 and a record low of 1.160 % in Feb 2022. France Mortgage Rate: Avg: Consumer: Up to 1 Year data remains active status in CEIC and is reported by Banque de France. The data is categorized under Global Database’s France – Table FR.M007: Mortgage Rate. http://www.banque-france.fr/gb/stat_conjoncture/series/statmon/html/statmon.htm [COVID-19-IMPACT]
This dataset contains two sheets showing:
The data was provided to the GLA by the FCA, and the source is FCA Mortgages Performance Product Sales Data (PSD007).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Additional Data Products
Product: Zillow Housing Aspirations Report
Date: April 2017
Definitions
Home Types and Housing Stock
- All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- Condo/Co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
- Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Additional Data Products
- Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
- Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
- Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
- Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
- The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.
About Zillow Data (and Terms of Use Information)
- Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
- All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
- For other data requests or inquiries for Zillow Real Estate Research, contact us here.
- All files are time series unless noted otherwise.
- To download all Zillow metrics for specific levels of geography, click here.
- To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
- Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.
Source: https://www.zillow.com/research/data/
This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.
- Analyze Unnamed: 1 in relation to Unnamed: 0
- Study the influence of Unnamed: 1 on Unnamed: 0
- More datasets
If you use this dataset in your research, please credit Zillow Data
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Percentage of mortgages constituted according to interest rate. HPT (API identifier: 24456)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/urn-ine-es-tabla-t3-3-24456 on 08 January 2022.
--- Dataset description provided by original source is as follows ---
Table of INEBase Percentage of mortgages constituted according to interest rate. Monthly. National. Mortgages Statistic
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The raw datasets provided here are intended for use in a Data in Brief article. These comprehensive files, sourced from the Freddie Mac website, offer quarterly snapshots of mortgage loans that have been originated in the USA since 1999, along with details of their subsequent repayment behaviours. This data remains current and is updated every three months. Specifically, the loan origination data present here encompasses amortized fixed-rate mortgage loans from 1999 up to June 2022. In contrast, the performance data is presented on a monthly basis, detailing loan repayment profiles from 1999 until September 30, 2022. Both the origination and performance datasets feature a unique loan ID, which can be utilized to integrate the data on loan originations with that of loan repayments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Annual Market Information Indices’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-c410c7a0-14c3-442b-b75f-4c230ec59406 on 13 January 2022.
--- Dataset description provided by original source is as follows ---
House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years.
House Construction Cost Index is based on the 1st day of the third month of each quarter.
Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Price of new property by area by year’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-916100c0-9376-4985-bc43-747af6585ece on 15 January 2022.
--- Dataset description provided by original source is as follows ---
Annual New Property prices by cities from 1969 to 2015
Prior to 1974 the data was based on surveys of existing house sales in Dublin carried out by the Valuation Office on behalf of the D. O. E. Since 1974 the data has been based on information supplied by all lending agencies on the average price of mortgage financed existing house transactions.
Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures.
Data for 1969/1970 is not available for Cork, Limerick, Galway, Waterford and Other areas
The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
National and Other Areas figure changed for 2015 on 27/6/15 as revised data received from Local Authorities Prices includes houses and apartments measured in €
--- Original source retains full ownership of the source dataset ---
Cost of Living Index (Excl. Rent) is a relative indicator of consumer goods prices, including groceries, restaurants, transportation and utilities. Cost of Living Index does not include accommodation expenses such as rent or mortgage. If a city has a Cost of Living Index of 120, it means Numbeo has estimated it is 20% more expensive than New York (excluding rent).
Please refer further to: https://www.numbeo.com/cost-of-living/cpi_explained.jsp for motivation and methodology.
All credits to https://www.numbeo.com .
This dataset would surely help socio-economic researchers to analyse and get deeper insights regarding the life of people country-wise.
Thanks to @andradaolteanu for the motivation! Upwards and onwards...
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Household Expenditure on Mortgage Interest and Charges in the US 2022 - 2026 Discover more data with ReportLinker!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘New Apartment prices by year’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-19c87ab0-a6fe-4910-a96a-891cd77f575c on 18 January 2022.
--- Dataset description provided by original source is as follows ---
Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Measured in €
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_15_02_23" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_15_02_23" class="govuk-link">Average price (CSV, 9.7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_15_02_23" class="govuk-link">Average price by property type (CSV, 29.3MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_15_02_23" class="govuk-link">Sales (CSV, 5MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_15_02_23" class="govuk-link">Cash mortgage sales (CSV, 7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_15_02_23" class="govuk-link">First time buyer and former owner occupier (CSV, 6.8MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_15_02_23" class="govuk-link">New build and existing resold property (CSV, 17.7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_15_02_23" class="govuk-link">Index (CSV, 6.2MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_15_02_23" class="govuk-link">Index seasonally adjusted (CSV, 204KB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2022-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_15_02_23" class="govuk-link">Average price seasonally adjusted<
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia Banking Survey: Loan Interest Rate: Whole Year Estimation: in USD: Investment data was reported at 6.566 % in Mar 2025. This records an increase from the previous number of 6.446 % for Dec 2024. Indonesia Banking Survey: Loan Interest Rate: Whole Year Estimation: in USD: Investment data is updated quarterly, averaging 6.330 % from Mar 2012 (Median) to Mar 2025, with 53 observations. The data reached an all-time high of 6.961 % in Sep 2023 and a record low of 4.454 % in Mar 2022. Indonesia Banking Survey: Loan Interest Rate: Whole Year Estimation: in USD: Investment data remains active status in CEIC and is reported by Bank Indonesia. The data is categorized under Indonesia Premium Database’s Business and Economic Survey – Table ID.SE003: Banking Survey: Interest Rate. [COVID-19-IMPACT]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Malta Lending Rate: Households: House Purchase: New Business data was reported at 0.000 % pa in 2022. Malta Lending Rate: Households: House Purchase: New Business data is updated yearly, averaging 0.000 % pa from Dec 2022 (Median) to 2022, with 1 observations. The data reached an all-time high of 0.000 % pa in 2022 and a record low of 0.000 % pa in 2022. Malta Lending Rate: Households: House Purchase: New Business data remains active status in CEIC and is reported by International Monetary Fund. The data is categorized under Global Database’s Malta – Table MT.IMF.IFS: Lending, Saving and Deposit Rates: Annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in the United States remained unchanged at 7.50 percent in June. This dataset provides - United States Average Monthly Prime Lending Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Austria Lending Rate: NB: Households: Mortgage: Rate Fixation: YoY data was reported at 3.760 % in Mar 2025. This records a decrease from the previous number of 3.860 % for Feb 2025. Austria Lending Rate: NB: Households: Mortgage: Rate Fixation: YoY data is updated monthly, averaging 3.160 % from Jan 2003 (Median) to Mar 2025, with 267 observations. The data reached an all-time high of 5.910 % in Oct 2008 and a record low of 1.530 % in Jan 2022. Austria Lending Rate: NB: Households: Mortgage: Rate Fixation: YoY data remains active status in CEIC and is reported by Oesterreichische Nationalbank. The data is categorized under Global Database’s Austria – Table AT.M004: Lending Rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.
I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!
Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.
Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.
Check out the code I used on Github.
I couldn't have gotten the data without Numbeo!
I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Loan Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/itssuru/loan-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
publicly available data from LendingClub.com. Lending Club connects people who need money (borrowers) with people who have money (investors). Hopefully, as an investor you would want to invest in people who showed a profile of having a high probability of paying you back.
We will use lending data from 2007-2010 and be trying to classify and predict whether or not the borrower paid back their loan in full. You can download the data from here.
Here are what the columns represent:
credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise. purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other"). int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates. installment: The monthly installments owed by the borrower if the loan is funded. log.annual.inc: The natural log of the self-reported annual income of the borrower. dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income). fico: The FICO credit score of the borrower. days.with.cr.line: The number of days the borrower has had a credit line. revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle). revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available). inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months. delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years. pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States increased to 6.72 percent in July 10 from 6.67 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.