7 datasets found
  1. T

    United Kingdom Interest Rate

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Interest Rate [Dataset]. https://tradingeconomics.com/united-kingdom/interest-rate
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 20, 1971 - Jun 19, 2025
    Area covered
    United Kingdom
    Description

    The benchmark interest rate in the United Kingdom was last recorded at 4.25 percent. This dataset provides - United Kingdom Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. Price of new property by area by year - Dataset - data.gov.ie

    • data.gov.ie
    Updated Mar 5, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2006). Price of new property by area by year - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/price-of-new-property-by-area-by-year
    Explore at:
    Dataset updated
    Mar 5, 2006
    Dataset provided by
    data.gov.ie
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Prior to 1974 the data was based on surveys of existing house sales in Dublin carried out by the Valuation Office on behalf of the D. O. E. Since 1974 the data has been based on information supplied by all lending agencies on the average price of mortgage financed existing house transactions. Average house prices are derived from data supplied by the mortgage lending agencies on loans approved by them rather than loans paid. In comparing house prices figures from one period to another, account should be taken of the fact that changes in the mix of houses (incl apartments) will affect the average figures. Data for 1969/1970 is not available for Cork, Limerick, Galway, Waterford and Other areas The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. National and Other Areas figure changed for 2015 on 27/6/15 as revised data received from Local Authorities Prices includes houses and apartments measured in €

  3. e

    Housing Wealth Distribution, Inequality and Residential Satisfaction,...

    • b2find.eudat.eu
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Housing Wealth Distribution, Inequality and Residential Satisfaction, 1997-2008 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/c115014e-3931-5559-8116-5abef1ac86ef
    Explore at:
    Dataset updated
    Nov 7, 2024
    Description

    This dataset encompasses the foundations and findings of a study titled "Housing Wealth Distribution, Inequality, and Residential Satisfaction," highlighting the evolution of residential properties from mere consumption goods to significant assets for wealth accumulation. Since the 1980s, with financial market deregulation in the UK, there has been a noticeable shift in homeownership patterns and housing wealth's role. The liberalisation of the banking sector, particularly mortgage lending, facilitated a significant rise in homeownership rates from around 50% in the 1970s to over 70% in the early 2000s, stabilizing at 65% in recent years. Concurrently, housing wealth relative to household annual gross disposable income has seen a considerable increase, underscoring the growing importance of residential properties as investment goods. The study explores the multifaceted impact of housing wealth on various aspects of life, including retirement financing, intergenerational wealth transfer, health, consumption, energy conservation, and education. Residential satisfaction, defined as the overall experience and contentment with housing, emerges as a critical factor influencing subjective well-being and labor mobility. Despite the evident influence of housing characteristics, social environment, and demographic factors on residential satisfaction, the relationship between housing wealth and satisfaction remains underexplored. To bridge this gap, the research meticulously assembles data from different surveys across the UK and the USA spanning 1970 to 2019, despite challenges such as data compatibility and measurement errors. Initial findings reveal no straightforward correlation between rising house prices and residential satisfaction, mirroring the Easterlin Paradox, which suggests that happiness levels do not necessarily increase with income growth. This paradox is dissected through the lenses of social comparison and adaptation, theorizing that relative income and the human tendency to adapt to changes might explain the stagnant satisfaction levels despite increased housing wealth. Further analysis within the UK context supports the social comparison hypothesis, suggesting that disparities in housing wealth distribution can lead to varied satisfaction levels, potentially exacerbating societal inequality. This phenomenon is not isolated to developed nations but is also pertinent to developing countries experiencing rapid economic growth alongside widening income and wealth gaps. The study concludes by emphasizing the significance of considering housing wealth inequality in policy-making, aiming to mitigate its far-reaching implications on societal well-being.Although China has almost eliminated urban poverty, the total number of Chinese citizens in poverty remains at 82 million, most of which are rural residents. The development of rural finance is essential to preventing the country from undergoing further polarization because of the significant potential of such development to facilitate resource interflows between rural and urban markets and to support sustainable development in the agricultural sector. However, rural finance is the weakest point in China's financial systems. Rural households are more constrained than their urban counterparts in terms of financial product availability, consumer protection, and asset accumulation. The development of the rural financial system faces resistance from both the demand and the supply sides. The proposed project addresses this challenge by investigating the applications of a proven behavioural approach, namely, Libertarian Paternalism, in the development of rural financial systems in China. This approach promotes choice architectures to nudge people into optimal decisions without interfering with the freedom of choice. It has been rigorously tested and warmly received in the UK public policy domain. This approach also fits the political and cultural background in China, in which the central government needs to maintain a firm control over financial systems as the general public increasingly demands more freedom. Existing behavioural studies have been heavily reliant on laboratory experiments. Although the use of field studies has been increasing, empirical evidence from the developing world is limited. Meanwhile, the applications of behavioural insights in rural economic development in China remains an uncharted territory. Rural finance studies on the household level are limited; evidence on the role of psychological and social factors in rural households' financial decisions is scarce. The proposed project will bridge this gap in the literature. The overarching research question of this project is whether and how behavioural insights can be used to help rural residents in China make sound financial decisions, which will ultimately contribute to the sustainable economic development in China. The research will be conducted through field experiments in rural China. By relying on field evidences, the project team will develop policy tools and checklists for policy makers to help rural households make sound financial decisions. Two types of tools will be developed for policy makers, namely, "push" tools that aim to achieve short-term policy compliance among rural households so that they can break out of the persistent poverty cycle and "pull" tools that can reduce fraud, error, and debt among rural households to prevent them from falling back into poverty. Finally, the project team will also use the research activities and findings as vehicles to engage and educate rural residents, local governments, regulators, and financial institutions. Standard and good practice will be proposed to interested parties for the designs of good behavioural interventions; ethical guidelines will be provided to encourage good practice. This important step ensures that the findings of this project will benefit academia and practice, with long-lasting, positive impacts. The findings will benefit researchers in behavioural finance and economics, rural economics, development economics, political sciences, and psychology. The findings of and the engagement in this project will help policy makers to develop cost-effective behavioural change policies. Rural households will benefit by being nudged into sound financial decisions and healthy financial habits. The project will provide insights on how to leverage behavioural insights to overcome persistent poverty in the developing world. Therefore, the research will be of interest to communities in China and internationally. The data were retrived from the British Household Panel Survey (BHPS) between 1997 and 2008, when both residential satisfaction scores and home valuations are available.

  4. N

    Nigeria NG: Lending Interest Rate

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Nigeria NG: Lending Interest Rate [Dataset]. https://www.ceicdata.com/en/nigeria/interest-rates/ng-lending-interest-rate
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Nigeria
    Variables measured
    Money Market Rate
    Description

    Nigeria NG: Lending Interest Rate data was reported at 17.580 % pa in 2017. This records an increase from the previous number of 16.867 % pa for 2016. Nigeria NG: Lending Interest Rate data is updated yearly, averaging 16.849 % pa from Dec 1970 (Median) to 2017, with 47 observations. The data reached an all-time high of 31.650 % pa in 1993 and a record low of 6.000 % pa in 1977. Nigeria NG: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;

  5. Data from: Housing Wealth Distribution, Inequality and Residential...

    • beta.ukdataservice.ac.uk
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helen Bao (2024). Housing Wealth Distribution, Inequality and Residential Satisfaction, 1997-2008 [Dataset]. http://doi.org/10.5255/ukda-sn-856273
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Helen Bao
    Description

    This dataset encompasses the foundations and findings of a study titled "Housing Wealth Distribution, Inequality, and Residential Satisfaction," highlighting the evolution of residential properties from mere consumption goods to significant assets for wealth accumulation. Since the 1980s, with financial market deregulation in the UK, there has been a noticeable shift in homeownership patterns and housing wealth's role. The liberalisation of the banking sector, particularly mortgage lending, facilitated a significant rise in homeownership rates from around 50% in the 1970s to over 70% in the early 2000s, stabilizing at 65% in recent years. Concurrently, housing wealth relative to household annual gross disposable income has seen a considerable increase, underscoring the growing importance of residential properties as investment goods.

    The study explores the multifaceted impact of housing wealth on various aspects of life, including retirement financing, intergenerational wealth transfer, health, consumption, energy conservation, and education. Residential satisfaction, defined as the overall experience and contentment with housing, emerges as a critical factor influencing subjective well-being and labor mobility. Despite the evident influence of housing characteristics, social environment, and demographic factors on residential satisfaction, the relationship between housing wealth and satisfaction remains underexplored.

    To bridge this gap, the research meticulously assembles data from different surveys across the UK and the USA spanning 1970 to 2019, despite challenges such as data compatibility and measurement errors. Initial findings reveal no straightforward correlation between rising house prices and residential satisfaction, mirroring the Easterlin Paradox, which suggests that happiness levels do not necessarily increase with income growth. This paradox is dissected through the lenses of social comparison and adaptation, theorizing that relative income and the human tendency to adapt to changes might explain the stagnant satisfaction levels despite increased housing wealth.

    Further analysis within the UK context supports the social comparison hypothesis, suggesting that disparities in housing wealth distribution can lead to varied satisfaction levels, potentially exacerbating societal inequality. This phenomenon is not isolated to developed nations but is also pertinent to developing countries experiencing rapid economic growth alongside widening income and wealth gaps. The study concludes by emphasizing the significance of considering housing wealth inequality in policy-making, aiming to mitigate its far-reaching implications on societal well-being.

  6. T

    United States Price to Rent Ratio

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Price to Rent Ratio [Dataset]. https://tradingeconomics.com/united-states/price-to-rent-ratio
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Dec 31, 2024
    Area covered
    United States
    Description

    Price to Rent Ratio in the United States increased to 134.20 in the fourth quarter of 2024 from 133.60 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.

  7. T

    Ecuador Interest Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Ecuador Interest Rate [Dataset]. https://tradingeconomics.com/ecuador/interest-rate
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Jun 30, 2025
    Area covered
    Ecuador
    Description

    The benchmark interest rate in Ecuador was last recorded at 8.46 percent. This dataset provides the latest reported value for - Ecuador Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United Kingdom Interest Rate [Dataset]. https://tradingeconomics.com/united-kingdom/interest-rate

United Kingdom Interest Rate

United Kingdom Interest Rate - Historical Dataset (1971-09-20/2025-06-19)

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
json, csv, excel, xmlAvailable download formats
Dataset updated
Jun 19, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Sep 20, 1971 - Jun 19, 2025
Area covered
United Kingdom
Description

The benchmark interest rate in the United Kingdom was last recorded at 4.25 percent. This dataset provides - United Kingdom Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu