42 datasets found
  1. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  2. Total population worldwide 1950-2100

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  3. Global One-Eighth Degree Population Base Year and Projection Grids Based on...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01 [Dataset]. https://data.nasa.gov/dataset/global-one-eighth-degree-population-base-year-and-projection-grids-based-on-the-shared-soc
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01, data set consists of global urban, rural, and total population data for the base year 2000, and population projections at ten-year intervals for 2010-2100 at a resolution of one-eighth degree (7.5 arc-minutes), consistent both quantitatively and qualitatively with the SSPs. Spatial demographic data are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).

  4. Global 1 km-grid population distributions dataset from 2020 to 2100

    • figshare.com
    zip
    Updated Aug 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinyu Wang; Xiangfeng Meng; Ying Long (2022). Global 1 km-grid population distributions dataset from 2020 to 2100 [Dataset]. http://doi.org/10.6084/m9.figshare.19609356.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Xinyu Wang; Xiangfeng Meng; Ying Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatially explicit population grid can play an important role in climate change, resource management, sustainable development and other fields. Several gridded datasets already exist, but global data, especially high-resolution data on future populations are largely lacking. Based on the WorldPop dataset, we present a global gridded population dataset covering 248 countries or areas at 30 arc-seconds (approximately 1 km) spatial resolution with 5-year intervals for the period 2020–2100 by implementing Random Forest (RF) algorithm. Our dataset is quantitatively consistent with the Shared Socioeconomic Pathways’ (SSPs) national population. The spatially explicit population grid we predicted in this research is validated by comparing it with the WorldPop dataset both at the sub-national level and grid level. 3569 provinces (almost all provinces on the globe) and more than 480 thousand grids are taken into verification, and the results show that our dataset can serve as an input for predictive research in various fields.

  5. d

    Replication Data for: \"World population growth over millennia: Ancient and...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nemčok, Miroslav (2023). Replication Data for: \"World population growth over millennia: Ancient and present phases with a temporary halt in-between\" [Dataset]. http://doi.org/10.7910/DVN/YOQ2QK
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nemčok, Miroslav
    Area covered
    World
    Description

    Published in The Anthropocene Review. Abstract: Enormous growth of the world population during the last two centuries and its present slowing down pose questions about precedents in history and broader forces shaping the population size. Population estimates collected in an extensive survey of literature (873 estimates from 25 studies covering 1,000,000 BCE to 2100 CE) show that world population growth has proceeded in two distinct phases of acceleration followed by stoppage—from at least 25,000 BCE to 100 BCE, and from 400 CE to the present, interrupted by centuries of standstill and 10% decrease. Both phases can be fitted with a mathematical function that projects to a peak at 11.2 ± 1.5 billion around 2100 CE. An interaction model can account for this acceleration-stoppage pattern in quantitative detail: Technology grows exponentially, with rate boosted by population. Population grows exponentially, capped by Earth’s carrying capacity. Technology raises this cap, but only until it approaches Earth’s ultimate carrying capacity.

  6. MANET: uncertainty in demographics – data on population projections

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Giarola; Sara Giarola (2024). MANET: uncertainty in demographics – data on population projections [Dataset]. http://doi.org/10.5281/zenodo.13335264
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sara Giarola; Sara Giarola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a repository of global and regional human population data collected from: the databases of scenarios assessed by the Intergovernmental Panel on Climate Change (Sixth Assessment Report, Special Report on 1.5 C; Fifth Assessment Report), multi-national databases of population projections (World Bank, International Database, United Nation population projections), and other very long-term population projections (Resources for the Future).

    More specifically, it contains:

    - in `other_pop_data` folder files from World Bank, the International Database from the US Census, and from IHME

    - in the `SSP` folder, the Shared Socioeconomic Pathways, as in the version 2.0 downloaded from IIASA and as in the version 3.0 downloaded from IIASA workspace

    - in the `UN` folder, the demographic projections from UN

    - `IAMstat.xlsx`, an overview file of the metadata accompanying the scenarios present in the IPCC databases

    - `RFF.csv`, an overview file containing the population projections obtained by Resources For the Future

    '- the remaining `.csv` files with names `AR6#`, `AR5#`, `IAMC15#` contain the IPCC scenarios assessed by the IPCC for preparing the IPCC assessment reports. They can be downloaded from AR5, SR 1.5, and AR6

    This data in intended to be downloaded for use together with the package downloadable here.

    The dataset was used as a supporting material for the paper "Underestimating demographic uncertainties in the synthesis process of the IPCC" accepted on npj Climate Action (DOI : 10.1038/s44168-024-00152-y).

  7. Z

    Pop-AUT: Subnational SSP Population Projections for Austria

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marbler, Alexander (2024). Pop-AUT: Subnational SSP Population Projections for Austria [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10477869
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    Marbler, Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    General Information

    The Pop-AUT database was developed for the DISCC-AT project, which required subnational population projections for Austria consistent with the updated Shared Socio-Economic Pathways (SSPs). For this database, the most recent version of the nationwide SSP population projections (IIASA-WiC POP 2023) are spatially downscaled, offering a detailed perspective at the subnational level in Austria. Recognizing the relevance of this information for a wider audience, the data has been made publicly accessible through an interactive dashboard. There, users are invited to explore how the Austrian population is projected to evolve under different SSP scenarios until the end of this century.

    Methodology

    The downscaling process of the nationwide Shared Socioeconomic Pathways (SSP) population projections is a four-step procedure developed to obtain subnational demographic projections for Austria. In the first step, population potential surfaces for Austria are derived. These indicate the attractiveness of a location in terms of habitability and are obtained using machine learning techniques, specifically random forest models, along with geospatial information such as land use, roads, elevation, distance to cities, and elevation (see, e.g., Wang et al. 2023).

    The population potential surfaces play a crucial role in distributing the Austrian population effectively across the country. Calculations are based on the 1×1 km spatial resolution database provided by Wang et al. (2023), covering all SSPs in 5-year intervals from 2020 to 2100.

    Moving to the second step, the updated nationwide SSP population projections for Austria (IIASA-WiC POP 2023) are distributed to all 1×1 km grid cells within the country. This distribution is guided by the previously computed grid cell-level population potential surfaces, ensuring a more granular representation of demographic trends.

    The base year for all scenarios is 2015, obtained by downscaling the UN World Population Prospects 2015 count for Austria using the WorldPop (2015) 1×1 km population count raster.

    In the third step, the 1×1 km population projections are temporally interpolated to obtain yearly projections for all SSP scenarios spanning the period from 2015 to 2100.

    The final step involves the spatial aggregation of the gridded SSP-consistent population projections to the administrative levels of provinces (Bundesländer), districts (Bezirke), and municipalities (Gemeinden).

    Dashboard

    The data can be explored interactively through a dashboard.

    Data Inputs

    Updated nationwide SSP population projections: IIASA-WiC POP (2023) (https://zenodo.org/records/7921989)

    Population potential surfaces: Wang, X., Meng, X., & Long, Y. (2022). Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Scientific Data, 9(1), 563.

    Shapefiles: data.gv.at

    WorldPop 2015: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647

    Version

    This is version 1.0, built upon the Review-Phase 2 version of the updated nationwide SSP population projections (IIASA-WiC POP 2023). Once these projections are revised, this dataset will be accordingly updated.

    File Organization

    The SSP-consistent population projections for Austria are accessible in two formats: .csv files for administrative units (provinces = Bundesländer, districts = Politische Bezirke, municipalities = Gemeinden) and 1×1 km raster files in GeoTIFF and NetCDF formats. All files encompass annual population counts spanning from 2015 to 2100.

  8. n

    Global Population Projection Grids Based on Shared Socioeconomic Pathways...

    • earthdata.nasa.gov
    Updated Mar 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2019). Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100 [Dataset]. http://doi.org/10.7927/H44747X4
    Explore at:
    Dataset updated
    Mar 22, 2019
    Dataset authored and provided by
    ESDIS
    Description

    The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100 consists of global spatial population projections at a resolution of 1-km (about 30 arc-seconds) for urban, rural, and total population, and at ten-year intervals for 2010-2100. The projections are consistent both quantitatively and qualitatively with the Shared Socioeconomic Pathways (SSPs). This data set is a downscaled version of the Global Population Projection Grids Based on SSPs, v1 (2010-2100), published in Jones and O'Neill (2016). The downscaling methods were published in Gao (2017). Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is distributed in GeoTIFF and netCDF formats.

  9. d

    Data from: Global Population Projection Grids Based on Shared Socioeconomic...

    • catalog.data.gov
    Updated Mar 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2019). Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100 [Dataset]. https://catalog.data.gov/ro/dataset/global-population-projection-grids-based-on-shared-socioeconomic-pathways-ssps-downsc-2010
    Explore at:
    Dataset updated
    Mar 22, 2019
    Dataset provided by
    SEDAC
    Description

    The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100 consists of global spatial population projections at a resolution of 1-km (about 30 arc-seconds) for urban, rural, and total population, and at ten-year intervals for 2010-2100. The projections are consistent both quantitatively and qualitatively with the Shared Socioeconomic Pathways (SSPs). This data set is a downscaled version of the Global Population Projection Grids Based on SSPs, v1 (2010-2100), published in Jones and O'Neill (2016). The downscaling methods were published in Gao (2017). Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is distributed in GeoTIFF and netCDF formats.

  10. d

    Country-Level Population and Downscaled Projections Based on the SRES A1,...

    • catalog.data.gov
    • earthdata.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES A1, B1, and A2 Scenarios, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-a1-b1-and-a2-sc-1990
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  11. w

    Data from: Global Population Projection Grids Based on Shared Socioeconomic...

    • data.wu.ac.at
    • earthdata.nasa.gov
    bin
    Updated Dec 8, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2017). Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010-2100 [Dataset]. https://data.wu.ac.at/schema/data_gov/NmU2M2MwY2EtNDdkOC00MWUzLThmNTQtYzVjYTI4MmRjMzRl
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 8, 2017
    Dataset provided by
    National Aeronautics and Space Administration
    Area covered
    2215cefb0dba98d16122f0c7ba0e53f79f6cecbc
    Description

    The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010-2100 consists of global spatial population projections at a resolution of one-eighth degree (7.5 arc-minutes) for urban, rural, and total population, consistent both quantitatively and qualitatively, with the SSPs at ten-year intervals for 2010-2100. Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is produced based on a clear need for plausible alternative projections of spatial distribution of the population that can represent patterns of development consistent with the SSPs.

  12. S

    National and provincial population and economy projection databases under...

    • scidb.cn
    Updated Apr 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo (2022). National and provincial population and economy projection databases under Shared Socioeconomic Pathways(SSP1-5)_v2 [Dataset]. http://doi.org/10.57760/sciencedb.01683
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    V1 dataset:Under the global framework of Shared Socioeconomic Pathways (SSPs), based on localized population and economic parameters, a Population Development Environment (PDE) model is adopted to construct population grid data for SSPs from 2020 to 2100; Using the Cobb Douglas model, construct economic data for SSPs from 2020 to 2100.The v1 dataset includes:Population grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5°GDP grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5 °Grid data on the output value of three industries in the Chinese region, with a spatial resolution of 0.1 °V2 dataset:Based on the data from the 7th National Population Census of China, starting from 2020, the parameters such as fertility rate, mortality rate, migration rate, and education level in the Population Development Environment (PDE) model were updated. Under the Shared Socioeconomic Pathways (SSP1-5), a new version (v2) of the total population and age and gender specific population projection dataset for China and its provinces from 2020 to 2100 was created. Based on the data from the 7th National Population Census and the 4th Economic Census of China, with 2020 as the starting year, the parameters of total factor productivity, capital stock, labor input, and capital elasticity coefficient in the Cobb Douglas model were updated. Under the shared SSP1-5, a new version (v2) of China and its provincial GDP projectiondataset from 2020 to 2100 was created.The v2 (2024 version) dataset includes:Total Population Data of China and Provinces (2020-2100)Population data by age and gender in China (2020-2100)China and Provincial GDP Data (2020-2100)

  13. d

    Data from: Global 15 x 15 Minute Grids of the Downscaled Population Based on...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global 15 x 15 Minute Grids of the Downscaled Population Based on the SRES B2 Scenario, 1990 and 2025 [Dataset]. https://catalog.data.gov/dataset/global-15-x-15-minute-grids-of-the-downscaled-population-based-on-the-sres-b2-scenario-199
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Global 15x15 Minute Grids of the Downscaled Population Based on the Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990 and 2025, are geospatial distributions of the downscaled population per Unit area (population densities). These global grids were generated using the Country-level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 data set, and CIESIN's Gridded Population of World, Version 2 (GPWv2) data set as the base map. The 1990 GPW was used as the base distribution and the country-level downscaled projections were used to replace population estimates of 1990 in GPW and 2025. The fractional distribution of the population at each grid cell is the same as the 1990 GPW, sub-nationally. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  14. Z

    Dataset CO2 Emission per Capita Forecast 2020-2100

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nowarski, Joseph (2023). Dataset CO2 Emission per Capita Forecast 2020-2100 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7264408
    Explore at:
    Dataset updated
    Sep 29, 2023
    Dataset authored and provided by
    Nowarski, Joseph
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset includes Business As Usual (BAU) forecast of the world's global CO2 emissions per capita (CpC) for 2020-2100.

    The CO2 emission forecast is from the publication “Dataset Global Warming Forecast using Acceleration Factors” [3]. According to this publication, the CO2 emissions without international transport will change from 33,803 MtCO2/y in 2020 to 70,191 MtCO2/y in 2100, a 108% increase.

    The population forecast applies a parabolic trendline of the last 30 years. According to this calculation, the world population will change from 7,795 million in 2020 to 15,206 million in 2100, a 95% increase.

    CO2 emissions per capita (CpC) are calculated by dividing the CO2 emissions per year by the population in the same year.

    The world CpC was 4.3366 tCO2/y,cap in 2020. The CpC forecast for 2100 is 4.6160 tCO2/y,cap, 6.4% increase.

  15. Prospective Age Dataset

    • figshare.com
    pdf
    Updated Nov 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maja Založnik (2018). Prospective Age Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.6974414.v25
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 24, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Maja Založnik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Computed prospective ages for 1950-2100 for all countries and regions based on 2017 Revision of the UN World Population Prospects.Content:1. codebook.pdf contains a brief overview of the dataset, its background and a description of the cases and variables.2. methods.pdf is a (draft but complete) write up of the calculations used to create the dataset.3. 2017_prospective-ages.csv is the human readable form of the prospective age dataset containing the calculated prospective old-age thresholds for 241 countries and regions, for the period 1950-2100, for men, women and both together, as well as the proportions of the population (male, female and total) over these thresholds.This figshare fileset is published directly from the github repository ProspectiveAgeData. For an application of this data see the factsheet on ageing in the Middle East and Northern Africa which will be published in Population Horizons journal.

  16. International Database: Time Series International Database: International...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). International Database: Time Series International Database: International Populations by Single Year of Age and Sex [Dataset]. https://catalog.data.gov/dataset/international-data-base-time-series-international-database-international-populations-by-si
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html

  17. n

    PBL IMAGE SSP scenarios - Population Density (5 arcmin)

    • nationaalgeoregister.nl
    • ckan.mobidatalab.eu
    • +2more
    landingpage
    Updated Aug 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Koninklijk Nederlands Meteorologisch Instituut (KNMI) (2017). PBL IMAGE SSP scenarios - Population Density (5 arcmin) [Dataset]. https://www.nationaalgeoregister.nl/geonetwork/srv/api/records/3411fdee-a810-49fc-bf72-c6fe58194b6b
    Explore at:
    landingpageAvailable download formats
    Dataset updated
    Aug 22, 2017
    Dataset authored and provided by
    Koninklijk Nederlands Meteorologisch Instituut (KNMI)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 1, 1970 - Jul 1, 2100
    Area covered
    Description

    Global population density from 1970 to 2100 per land grid cell. The data is licensed under CC-BY. The IMAGE-team would appreciate cooperation when data is used.

  18. c

    Data from: Country-Level Population and Downscaled Projections Based on the...

    • s.cnmilf.com
    • datasets.ai
    • +4more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  19. Global 1-km Downscaled Population Base Year and Projection Grids Based on...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    • +2more
    Updated Apr 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2020). Global 1-km Downscaled Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01 [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/global-1-km-downscaled-population-base-year-and-projection-grids-based-on-the-shared-socio
    Explore at:
    Dataset updated
    Apr 9, 2020
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global 1-km Downscaled Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01, data set consists of global urban, rural, and total populaton for the base year 2000, and population projections at ten-year intervals for 2010-2100 at a resolution of 1-km (about 30 arc-seconds), consistent both quantitatively and qualitatively with the SSPs. This 1-km data set is a downscaled version of the one-eighth degree (7.5 arc-minutes) data published in Jones and O'Neill (2016). The downscaling methods were published in Gao (2017). Spatial demographic data are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).

  20. Hybrid gridded demographic data for China, 1979-2100

    • zenodo.org
    • explore.openaire.eu
    nc
    Updated Feb 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhao Liu; Zhao Liu; Si Gao; Yidan Chen; Wenjia Cai; Wenjia Cai; Si Gao; Yidan Chen (2021). Hybrid gridded demographic data for China, 1979-2100 [Dataset]. http://doi.org/10.5281/zenodo.4554571
    Explore at:
    ncAvailable download formats
    Dataset updated
    Feb 23, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Zhao Liu; Zhao Liu; Si Gao; Yidan Chen; Wenjia Cai; Wenjia Cai; Si Gao; Yidan Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution.

    The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data).

    The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data.

    This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data).

    Method - demographic fractions by age and gender in 1979-2020

    Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China.

    To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as:

    \(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\)

    Where:

    - \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020.

    - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census.

    - \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census.

    Method - demographic totals by age and gender in 1979-2020

    The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020.

    Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020.

    Method - demographic totals and fractions by age and gender in 2010-2100

    The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell.

    This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender.

    Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods.

    Disclaimer

    This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
Organization logo

Population of the world 10,000BCE-2100

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 7, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

Search
Clear search
Close search
Google apps
Main menu