Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of babies born in the United States from 1995 to 2025. The x-axis represents the years, labeled from '95 to '25, while the y-axis shows the annual number of births. Over this 30-year period, birth numbers peaked at 4,316,233 in 2007 and reached a low of 3,596,017 in 2023. The data reveals relatively stable birth rates from 1995 to 2010, with slight fluctuations, followed by a gradual decline starting around 2017. The information is presented in a line graph format, effectively highlighting the long-term downward trend in U.S. birth numbers over the specified timeframe.
Number and percentage of live births, by month of birth, 1991 to most recent year.
In 2023, around 85 percent of infants in the United States were being breastfed at discharge from the hospital, highlighting a strong trend towards early breastfeeding. This statistic shows select medical and health characteristics of mothers during pregnancy and birth in the United States in 2023.
Maternal health and birth characteristics The data reveals that 59.7 percent of delivering mothers in the U.S. were overweight or obese in 2023, a concerning statistic for maternal health. Additionally, 32.3 percent of births were via cesarean delivery, while only 1.5 percent were home births. Home birth rates vary by state, with Idaho having the highest at 4.7 percent. Despite the low overall rate of home births, some women choose this option for reasons including less medical intervention, location preference, cost, and cultural or religious factors. Declining birth rates and changing demographics The overall birth rate in the United States has been steadily declining over the past few decades. In 2022, there were 11 births per 1,000 population, down from 16.7 in 1990. This decline is influenced by various factors, including financial concerns and increased focus on careers among women. Interestingly, birth rates vary significantly across different ethnic groups, with Native Hawaiian and Pacific Islander women having the highest birth rates, while Asian and white women have the lowest.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Crude Birth Rate for the United States (SPDYNCBRTINUSA) from 1960 to 2023 about birth, crude, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the code replication archive for the paper, "The COVID-19 Baby Bump in the United States," forthcoming in the Proceedings of the National Academy of Sciences. The underlying natality microdata are restricted, so this archive contains only the code to replicate our analysis.We use natality microdata covering the universe of U.S. births for 2015-2021 and California births from 2015 through February 2023 to examine childbearing responses to the COVID-19 pandemic. We find that 60% of the 2020 decline in U.S. fertility rates was driven by sharp reductions in births to foreign-born mothers although births to this group comprised only 22% of all U.S. births in 2019. This decline started in January 2020. In contrast, the COVID-19 recession resulted in an overall “baby bump” among U.S.-born mothers which marked the first reversal in declining fertility rates since the Great Recession. Births to U.S.-born mothers fell by 31,000 in 2020 relative to a pre-pandemic trend but increased by 71,000 in 2021. The data for California suggest that U.S. births remained elevated through February 2023. The baby bump was most pronounced for first births and women under age 25, suggesting that the pandemic led some women to start families earlier. Above age 25, the baby bump was most pronounced for women ages 30-34 and women with a college education. The 2021-2022 baby bump is especially remarkable given the large declines in fertility rates that would have been projected by standard statistical models.
As of 2016, the top U.S. hospital for child birth is Northside Hospital in Atlanta, Georgia. All hospitals are required, by law, to report and provide access to birth records through the federal National Vital Statistics system. The U.S. system of reporting births (and deaths) is funded by individual States as well as through the National Center for Health Statistics.
Georgia birth data
Georgia is one of the most populous states in the United States. The metropolitan area with the highest birth rate in the U.S. was Hinesville, Georgia. Hinesville is located in the south eastern section of the state of Georgia. Despite having the hospital that delivers the most babies in the U.S., Georgia does not have one of highest birth rates in the U.S. As of 2017, Utah had the highest birth rate in the United States.
Birth-related developments
The number of U.S. births has remained relatively stable since 1990. Despite having a relatively stable birth rate, the number bassinet available in U.S. hospitals is on the decline. Birth rates, however, show variation among different U.S. populations. Mothers of American Indian or Alaska Native descent tend to have higher birth rates than other ethnicities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Fertility Rate: Total: Births per Woman data was reported at 1.800 Ratio in 2016. This records a decrease from the previous number of 1.843 Ratio for 2015. United States US: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.002 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.654 Ratio in 1960 and a record low of 1.738 Ratio in 1976. United States US: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
US Social Security applications are a great way to track trends in how babies born in the US are named.
Data.gov releases two datasets that are helplful for this: one at the national level and another at the state level. Note that only names with at least 5 babies born in the same year (/ state) are included in this dataset for privacy.
I've taken the raw files here and combined/normalized them into two CSV files (one for each dataset) as well as a SQLite database with two equivalently-defined tables. The code that did these transformations is available here.
New to data exploration in R? Take the free, interactive DataCamp course, "Data Exploration With Kaggle Scripts," to learn the basics of visualizing data with ggplot. You'll also create your first Kaggle Scripts along the way.
This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Fertility Rate, Total for the United States (SPDYNTFRTINUSA) from 1960 to 2023 about fertility, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sex ratio at birth (male births per female births) in United States was reported at 1.049 in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Sex ratio at birth (male births per female births) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
The child mortality rate in the United States, for children under the age of five, was 462.9 deaths per thousand births in 1800. This means that for every thousand babies born in 1800, over 46 percent did not make it to their fifth birthday. Over the course of the next 220 years, this number has dropped drastically, and the rate has dropped to its lowest point ever in 2020 where it is just seven deaths per thousand births. Although the child mortality rate has decreased greatly over this 220 year period, there were two occasions where it increased; in the 1870s, as a result of the fourth cholera pandemic, smallpox outbreaks, and yellow fever, and in the late 1910s, due to the Spanish Flu pandemic.
Popular Baby Names by Sex and Ethnic Group Data were collected through civil birth registration. Each record represents the ranking of a baby name in the order of frequency. Data can be used to represent the popularity of a name. Caution should be used when assessing the rank of a baby name if the frequency count is close to 10; the ranking may vary year to year.
This layer shows children by nativity of parents by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of children who are in immigrant families (children who are foreign born or live with at least one parent who is foreign born). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B05009Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Campbellsport population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Campbellsport. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,299 (63.27% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Campbellsport Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 195 countries was 18.38 births per 1000 people. The highest value was in Niger: 45.03 births per 1000 people and the lowest value was in Hong Kong: 4.4 births per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Teen mothers often have a higher proportion of low birthweight babies than do mothers in the 20 to 39 year age group. There is a significant concentration of high low birthweight rates for teen mothers in Atlantic Canada. Areas with very high 1996 low birthweight rates (8.0% and grater) are most commonly found in Quebec and Ontario. Low birthweight (LBW) is a health status indicator, and is defined as babies born with weight under 2500 grams. The proportion of low birthweight babies born to mothers 15 years of age and older indicates the health and well-being of a population. Health status refers to the state of health of a person or group, and measures causes of sickness and death. It can also include people’s assessment of their own health.
This layer shows children by nativity of parents by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percentage of children who are in immigrant families (children who are foreign born or live with at least one parent who is foreign born). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B05009Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The Atlantic Provinces have a higher proportion of low birthweight births than most other areas in Canada. As one moves west through the Prairies, then to British Columbia, and finally to the territories, the low birthweight births decrease by region. Low birthweight (LBW) is a health status indicator, and is defined as babies born with weight under 2500 grams. The proportion of low birthweight babies born to mothers 15 years of age and older indicates the health and well-being of a population. Health status refers to the state of health of a person or group, and measures causes of sickness and death. It can also include people’s assessment of their own health.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWMhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWM
This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of babies born in the United States from 1995 to 2025. The x-axis represents the years, labeled from '95 to '25, while the y-axis shows the annual number of births. Over this 30-year period, birth numbers peaked at 4,316,233 in 2007 and reached a low of 3,596,017 in 2023. The data reveals relatively stable birth rates from 1995 to 2010, with slight fluctuations, followed by a gradual decline starting around 2017. The information is presented in a line graph format, effectively highlighting the long-term downward trend in U.S. birth numbers over the specified timeframe.