100+ datasets found
  1. Population of the U.S. by race 2000-2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2000 - Jul 2023
    Area covered
    United States
    Description

    This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

  2. Percentage of U.S. population as of 2016 and 2060, by race and Hispanic...

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of U.S. population as of 2016 and 2060, by race and Hispanic origin [Dataset]. https://www.statista.com/statistics/270272/percentage-of-us-population-by-ethnicities/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.

    The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.

    The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.

  3. Distribution of the U.S. population 2023, by generation and race

    • statista.com
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the U.S. population 2023, by generation and race [Dataset]. https://www.statista.com/statistics/206969/race-and-ethnicity-in-the-us-by-generation/
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, half of Generation Z in the United States were white. In comparison, 48 percent of Gen Alpha were white in that year, making it the first generation that does not have a majority white population in the United States.

  4. Census of Population and Housing, 1980 [United States]: P.L. 94-171...

    • icpsr.umich.edu
    ascii
    Updated Jan 12, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 1980 [United States]: P.L. 94-171 Population Counts [Dataset]. http://doi.org/10.3886/ICPSR07854.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7854/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7854/terms

    Time period covered
    1980
    Area covered
    West Virginia, North Carolina, Arkansas, Rhode Island, Kentucky, Puerto Rico, Minnesota, Colorado, Michigan, District of Columbia
    Description

    These data files provide population counts for racial and ethnic groups living in all the jurisdictions of the states in the United States in 1980. These data were produced as part of the Census Bureau's commitment under Public Law 94-171 to aid states' legislatures in the redistricting process. Public Law 171 of the 94th Congress was passed in 1975 to help facilitate the one-man-one-vote concept enunciated in 1963. It specifies procedures for conducting the decennial census for those states wishing to participate and makes improvements for reporting the findings as well. As a result of this law, the Census Bureau was authorized to prepare for each state a data file that contains population counts for racial and ethnic groups living in all the jurisdictions of the state. Each of these files contains summary statistics for seven population groups/types: Whites, Blacks, American Indians, Eskimos and Aleuts, Asians and Pacific Islanders, Spanish-Hispanics, total population, and population of other races. Each record in each of the files is a type of census reporting area arranged in hierarchical order. There are 51 data files, one for each of the states plus one for Washington, DC. Each of the files has the same format of 156-character logical records with characters 1-100 containing identification data and the alphabetic name of the record and characters 101-156 containing the data for the seven population groups/types. Data are provided for states or state equivalent, counties or county equivalent, minor civil divisions (MCDs) or census county divisions (CCDs), incorporated places, election precincts or their equivalent (if any), census tracts or block numbering areas (BNAs) (if any), and block groups and blocks in blocked areas, or enumeration districts in nonblock-numbered areas. The Census Bureau has produced a file, User Note No.#2 (Part 90), to accompany the PL94-171 series that documents a problem encountered in all but nine states in the series. The nine states NOT affected are Connecticut, Delaware, Hawaii, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island, and Vermont. The file contains a list of places split across counties or MCD/CCDs that have two partial records but do not have a "part" indicator on either record. Because of the omission of this part indicator, it is not possible to connect the two parts of the same record (place) for analysis purposes without the User Note No.#2 that allows researchers to identify these places and use the data for them more easily. There are 5,971 records (split places) in the file, each with a logical record length of 48.

  5. U.S. distribution of race and ethnicity among the military 2019

    • statista.com
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. distribution of race and ethnicity among the military 2019 [Dataset]. https://www.statista.com/statistics/214869/share-of-active-duty-enlisted-women-and-men-in-the-us-military/
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the fiscal year of 2019, 21.39 percent of active-duty enlisted women were of Hispanic origin. The total number of active duty military personnel in 2019 amounted to 1.3 million people.

    Ethnicities in the United States The United States is known around the world for the diversity of its population. The Census recognizes six different racial and ethnic categories: White American, Native American and Alaska Native, Asian American, Black or African American, Native Hawaiian and Other Pacific Islander. People of Hispanic or Latino origin are classified as a racially diverse ethnicity.

    The largest part of the population, about 61.3 percent, is composed of White Americans. The largest minority in the country are Hispanics with a share of 17.8 percent of the population, followed by Black or African Americans with 13.3 percent. Life in the U.S. and ethnicity However, life in the United States seems to be rather different depending on the race or ethnicity that you belong to. For instance: In 2019, native Hawaiians and other Pacific Islanders had the highest birth rate of 58 per 1,000 women, while the birth rae of white alone, non Hispanic women was 49 children per 1,000 women.

    The Black population living in the United States has the highest poverty rate with of all Census races and ethnicities in the United States. About 19.5 percent of the Black population was living with an income lower than the 2020 poverty threshold. The Asian population has the smallest poverty rate in the United States, with about 8.1 percent living in poverty.

    The median annual family income in the United States in 2020 earned by Black families was about 57,476 U.S. dollars, while the average family income earned by the Asian population was about 109,448 U.S. dollars. This is more than 25,000 U.S. dollars higher than the U.S. average family income, which was 84,008 U.S. dollars.

  6. l

    2022 Population and Poverty at Split Tract

    • data.lacounty.gov
    • egis-lacounty.hub.arcgis.com
    • +1more
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2022 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2022-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  7. g

    US Census,San Francisco Tract level Demographics- population and race, San...

    • geocommons.com
    Updated May 8, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bill Greer (2008). US Census,San Francisco Tract level Demographics- population and race, San Francisco, 2000 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 8, 2008
    Dataset provided by
    clesueur
    US Census
    Authors
    Bill Greer
    Description

    This dataset is a boundary file obtained from the US Census Tiger Shape file library which can be found online. I downloaded the File for California then Used ESRI ArcMap to cut out the San Francisco MSA from Californai. Census demographic data was joined to the boundaries. This file includes attributes on Race and Populations and other demographic data.

  8. l

    2023 Population and Poverty by Split Tract

    • geohub.lacity.org
    • egis-lacounty.hub.arcgis.com
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2023 Population and Poverty by Split Tract [Dataset]. https://geohub.lacity.org/items/1acee4bb0b0b42908ca95a5b9eae85f3
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.

  9. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  10. g

    Census, Projections of the Population By Age 65+ year old at Individual...

    • geocommons.com
    Updated May 2, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Census, Projections of the Population By Age 65+ year old at Individual State level, USA, 1995 to 2025 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 2, 2008
    Dataset provided by
    Census
    data
    Description

    Projections of the Population (against the 1990 Census), By Age 65+ year old at individual State level: 1995 to 2025. Data provided by Census although I added calculations for percent change. (Numbers in thousands. Resident population. Series A projections. For more details, see Population Paper Listings #47, "Population Projections for States, by Age, Sex, Race, and Hispanic Origin: 1995 to 2025.")

  11. d

    Race and Ethnicity - ACS 2015-2019 - Tempe Tracts

    • catalog.data.gov
    • open.tempe.gov
    • +7more
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Race and Ethnicity - ACS 2015-2019 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2015-2019-tempe-tracts-3bc24
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Description

    Notice: The U.S. Census Bureau is delaying the release of the 2016-2020 ACS 5-year data until March 2022. For more information, please read the Census Bureau statement regarding this matter. -----------------------------------------This layer shows population broken down by race and Hispanic origin. This layer shows Census data from Esri's Living Atlas and is clipped to only show Tempe census tracts. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). Data is from US Census American Community Survey (ACS) 5-year estimates. Vintage: 2015-2019 ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.) Data downloaded from: Census Bureau's API for American Community Survey Date of Census update: December 10, 2020 National Figures: data.census.gov Additional Census data notes and data processing notes are available at the Esri Living Atlas Layer: https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview (Esri's Living Atlas always shows latest data)

  12. Census of Population and Housing, 1980 [United States]: Summary Tape File 2B...

    • icpsr.umich.edu
    ascii
    Updated Jan 12, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 1980 [United States]: Summary Tape File 2B [Dataset]. http://doi.org/10.3886/ICPSR08037.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8037/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8037/terms

    Time period covered
    1980
    Area covered
    Oregon, Massachusetts, Tennessee, Colorado, Missouri, Vermont, South Dakota, Wisconsin, Florida, Puerto Rico
    Description

    Summary Tape File 2 (STF 2) files contain detailed complete-count tabulations for all persons and housing units in the United States. The STF 2B files provide summaries for states or state equivalents, state components, standard consolidated statistical areas (SCSAs) and the urban and rural portions of the SCSAs, standard metropolitan statistical areas (SMSAs) and the urban and rural portions of the SMSAs, urbanized areas, counties or county equivalents and the rural portion of the counties, minor civil divisions or Census county divisions, places of 1,000 people or more and the urban portions of any places that have been split into urban and rural components, American Indian reservations and their county portions, and Alaska Native villages. Population (or demographic) and housing items are contained in each type of file. The data are presented in two types of records. The first, record A, is presented once for each geographic area and summarizes total population and all housing units. The second, record B, is presented for the total population in each area and repeated for each race and Hispanic group in the area that meets nonsuppression criteria. Record B is presented for a maximum of 26 racial/Hispanic groups. If too few persons or housing units fall into an ethnic category in a census area, the data for that category are suppressed. There are 51 data files, one file for each state and the District of Columbia.

  13. U.S. population by sex and age 2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population by sex and age 2023 [Dataset]. https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The estimated population of the U.S. was approximately 334.9 million in 2023, and the largest age group was adults aged 30 to 34. There were 11.88 million males in this age category and around 11.64 million females. Which U.S. state has the largest population? The population of the United States continues to increase, and the country is the third most populous in the world behind China and India. The gender distribution has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the highest population in 2023. The U.S. population by race and ethnicity The United States is well known the world over for having a diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.

  14. N

    United States Age Group Population Dataset: A complete breakdown of United...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  15. IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure:...

    • icpsr.umich.edu
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David (2025). IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure: Residential Segregation - Index of Dissimilarity Inequity by County, United States, 2005-2022 [Dataset]. http://doi.org/10.3886/ICPSR39242.v1
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39242/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39242/terms

    Time period covered
    2005 - 2022
    Area covered
    United States
    Description

    The IPUMS Contextual Determinants of Health (CDOH) data series includes measures of disparities, policies, and counts, by state or county, for historically marginalized populations in the United States including Black, Asian, Hispanic/Latina/o/e/x, and LGBTQ+ persons, and women. The IPUMS CDOH data are made available through ICPSR/DSDR for merging with the National Couples' Health and Time Study (NCHAT), United States, 2020-2021 (ICPSR 38417) by approved restricted data researchers. All other researchers can access the IPUMS CDOH data via the IPUMS CDOH website. Unlike other IPUMS products, the CDOH data are organized into multiple categories related to Race and Ethnicity, Sexual and Gender Minority, Gender, and Politics. The CDOH measures were created from a wide variety of data sources (e.g., IPUMS NHGIS, the Census Bureau, the Bureau of Labor Statistics, the Movement Advancement Project, and Myers Abortion Facility Database). Measures are currently available for states or counties from approximately 2000 to 2020. The Race and Ethnicity measures in this release are indicators of residential segregation, which measures the physical separation of population groups into different areas (i.e., neighborhoods) in a geographic unit (i.e., a county or city). The index of dissimilarity is a measure of evenness and measures the proportion of a group's population that must move so that each sub-county geographic unit in a county has the same proportion of that group as the county. Census tracts are used as the sub-county geographic unit because census tracts nest within counties.

  16. a

    2015 Population and Poverty at Split Tract

    • hub.arcgis.com
    • demography-lacounty.hub.arcgis.com
    • +1more
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2015 Population and Poverty at Split Tract [Dataset]. https://hub.arcgis.com/maps/lacounty::2015-population-and-poverty-at-split-tract/about
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2015 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP15: 2015 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2015) CT10FIP15: 2010 census tract with 2015 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP15_AGE_0_4: 2015 population 0 to 4 years oldPOP15_AGE_5_9: 2015 population 5 to 9 years old POP15_AGE_10_14: 2015 population 10 to 14 years old POP15_AGE_15_17: 2015 population 15 to 17 years old POP15_AGE_18_19: 2015 population 18 to 19 years old POP15_AGE_20_44: 2015 population 20 to 24 years old POP15_AGE_25_29: 2015 population 25 to 29 years old POP15_AGE_30_34: 2015 population 30 to 34 years old POP15_AGE_35_44: 2015 population 35 to 44 years old POP15_AGE_45_54: 2015 population 45 to 54 years old POP15_AGE_55_64: 2015 population 55 to 64 years old POP15_AGE_65_74: 2015 population 65 to 74 years old POP15_AGE_75_84: 2015 population 75 to 84 years old POP15_AGE_85_100: 2015 population 85 years and older POP15_WHITE: 2015 Non-Hispanic White POP15_BLACK: 2015 Non-Hispanic African AmericanPOP15_AIAN: 2015 Non-Hispanic American Indian or Alaska NativePOP15_ASIAN: 2015 Non-Hispanic Asian POP15_HNPI: 2015 Non-Hispanic Hawaiian Native or Pacific IslanderPOP15_HISPANIC: 2015 HispanicPOP15_MALE: 2015 Male POP15_FEMALE: 2015 Female POV15_WHITE: 2015 Non-Hispanic White below 100% Federal Poverty Level POV15_BLACK: 2015 Non-Hispanic African American below 100% Federal Poverty Level POV15_AIAN: 2015 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV15_ASIAN: 2015 Non-Hispanic Asian below 100% Federal Poverty Level POV15_HNPI: 2015 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV15_HISPANIC: 2015 Hispanic below 100% Federal Poverty Level POV15_TOTAL: 2015 Total population below 100% Federal Poverty Level POP15_TOTAL: 2015 Total PopulationAREA_SQMIL: Area in square milePOP15_DENSITY: Population per square mile.POV15_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2015. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  17. g

    U.S. Population by state by race 2007

    • geocommons.com
    Updated May 5, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). U.S. Population by state by race 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 5, 2008
    Dataset provided by
    data
    U.S. Census
    Description

    U.S. Census released estimates of 2007 population by race and by state on 1st May, 2008. Here is a bulletin from Census: http://www.census.gov/Press-Release/www/releases/archives/population/011910.html

  18. ACS Race and Hispanic Origin Variables - Centroids

    • coronavirus-resources.esri.com
    • mapdirect-fdep.opendata.arcgis.com
    • +4more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Race and Hispanic Origin Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/e6d218a8ba764a939c2add5c081beef9
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area, and the total population in that area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  19. m

    Massachusetts Population by Race/Ethnicity

    • mass.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health, Massachusetts Population by Race/Ethnicity [Dataset]. https://www.mass.gov/info-details/massachusetts-population-by-raceethnicity
    Explore at:
    Dataset provided by
    Department of Public Health
    Population Health Information Tool
    Area covered
    Massachusetts
    Description

    How racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.

  20. l

    2020 Population and Poverty at Split Tract

    • data.lacounty.gov
    • demography-lacounty.hub.arcgis.com
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2020 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/6b4334bfe44e4dfb9d38a674f72f3b92
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2020 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP21: 2020 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2020) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP21CSA: 2020 census tract with 2020 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP20_AGE_0_4: 2020 population 0 to 4 years oldPOP20_AGE_5_9: 2020 population 5 to 9 years old POP20_AGE_10_14: 2020 population 10 to 14 years old POP20_AGE_15_17: 2020 population 15 to 17 years old POP20_AGE_18_19: 2020 population 18 to 19 years old POP20_AGE_20_44: 2020 population 20 to 24 years old POP20_AGE_25_29: 2020 population 25 to 29 years old POP20_AGE_30_34: 2020 population 30 to 34 years old POP20_AGE_35_44: 2020 population 35 to 44 years old POP20_AGE_45_54: 2020 population 45 to 54 years old POP20_AGE_55_64: 2020 population 55 to 64 years old POP20_AGE_65_74: 2020 population 65 to 74 years old POP20_AGE_75_84: 2020 population 75 to 84 years old POP20_AGE_85_100: 2020 population 85 years and older POP20_WHITE: 2020 Non-Hispanic White POP20_BLACK: 2020 Non-Hispanic African AmericanPOP20_AIAN: 2020 Non-Hispanic American Indian or Alaska NativePOP20_ASIAN: 2020 Non-Hispanic Asian POP20_HNPI: 2020 Non-Hispanic Hawaiian Native or Pacific IslanderPOP20_HISPANIC: 2020 HispanicPOP20_MALE: 2020 Male POP20_FEMALE: 2020 Female POV20_WHITE: 2020 Non-Hispanic White below 100% Federal Poverty Level POV20_BLACK: 2020 Non-Hispanic African American below 100% Federal Poverty Level POV20_AIAN: 2020 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV20_ASIAN: 2020 Non-Hispanic Asian below 100% Federal Poverty Level POV20_HNPI: 2020 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV20_HISPANIC: 2020 Hispanic below 100% Federal Poverty Level POV20_TOTAL: 2020 Total population below 100% Federal Poverty Level POP20_TOTAL: 2020 Total PopulationAREA_SQMIL: Area in square milePOP20_DENSITY: Population per square mile.POV20_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019.2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
Organization logo

Population of the U.S. by race 2000-2023

Explore at:
33 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 20, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 2000 - Jul 2023
Area covered
United States
Description

This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

Search
Clear search
Close search
Google apps
Main menu