While the standard image of the nuclear family with two parents and 2.5 children has persisted in the American imagination, the number of births in the U.S. has steadily been decreasing since 1990, with about 3.6 million babies born in 2023. In 1990, this figure was 4.16 million. Birth and replacement rates A country’s birth rate is defined as the number of live births per 1,000 inhabitants, and it is this particularly important number that has been decreasing over the past few decades. The declining birth rate is not solely an American problem, with EU member states showing comparable rates to the U.S. Additionally, each country has what is called a “replacement rate.” The replacement rate is the rate of fertility needed to keep a population stable when compared with the death rate. In the U.S., the fertility rate needed to keep the population stable is around 2.1 children per woman, but this figure was at 1.67 in 2022. Falling birth rates Currently, there is much discussion as to what exactly is causing the birth rate to decrease in the United States. There seem to be several factors in play, including longer life expectancies, financial concerns (such as the economic crisis of 2008), and an increased focus on careers, all of which are causing people to wait longer to start a family. How international governments will handle falling populations remains to be seen, but what is clear is that the declining birth rate is a multifaceted problem without an easy solution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic compensation – the opposing responses of vital rates along environmental gradients – potentially delays anticipated species’ range contraction under climate change, but no consensus exists on its actual contribution. We calculated population growth rate (λ) and demographic compensation across the distributional ranges of 81 North American tree species, and examined their responses to simulated warming and tree competition. We found that 43% of species showed stable population size at both northern and southern edges. Demographic compensation was detected in 25 species, yet fifteen of them still showed a potential retraction from southern edges, indicating that compensation alone cannot maintain range stability. Simulated climatic warming caused larger decreases in λ for most species, and weakened the effectiveness of demographic compensation in stabilizing ranges. These findings suggest that climate stress may surpass the limited capacity of demographic compensation and pose a threat to the viability of North American tree populations.
Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.
Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar
Abstract
Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.
1. Population Dynamics
Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:
Birth rate (natality)
Death rate (mortality)
Immigration (inflow of people)
Emigration (outflow of people)
Types of Population Dynamics
Natural population change: Based on birth and death rates.
Migration-based change: Caused by people moving in or out of a region.
Demographic transition: A model that explains changes in population growth as societies industrialize.
Population distribution: Changes in where people live (urban vs rural).
2. Population Migration
Migration refers to the movement of people from one location to another, often across political or geographical boundaries.
Types of Migration
External migration (international):
Movement between countries.
Examples: Refugee relocation, labor migration, education.
Internal migration:
Movement within the same country or region.
Examples: Rural-to-urban migration, inter-state migration.
3. Factors Determining Migration
Migration is influenced by push and pull factors:
Push factors (reasons to leave a place):
Unemployment
Conflict or war
Natural disasters
Poverty
Lack of services or opportunities
Pull factors (reasons to move to a place):
Better job prospects
Safety and security
Higher standard of living
Education and healthcare access
Family reunification
4. Main Trends in Migration
Urbanization: Mass movement to cities for work and better services.
Global labor migration: Movement from developing to developed countries.
Refugee and asylum seeker flows: Due to conflict or persecution.
Circular migration: Repeated movement between two or more locations.
Brain drain/gain: Movement of skilled labor away from (or toward) a country.
5. Impact of Migration on Population Health
Positive Impacts:
Access to better healthcare (for migrants moving to better systems).
Skills and knowledge exchange among health professionals.
Remittances improving healthcare affordability in home countries.
Negative Impacts:
Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.
Spread of infectious diseases: Especially when health screening is lacking.
Strain on health services: In receiving areas, especially with sudden or large influxes.
Mental health challenges: Due to cultural dislocation, discrimination, or trauma.
Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.
Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.
Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed
Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:
(1)Nt=f(Nt−1,εt)
where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:
(2)xt=axt−1+bϕt
where xt=Nt−N*, a=f
f(N*,ε*)/f
N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*
The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.
Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.
To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.
Population migration
The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.
In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.
Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.
There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
In the United States (US), 99.88 percent of the population of rural regions had access to at least one fixed-broadband provider as of June 2020. While 99.76 percent of the population in rural areas have access to two or more fixed-broadband providers, when considering areas covered by three or more providers, this figure drops to 85.14 percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Text A, Representation theorem for a right eigenvector of an irreducible non-negative matrix. Text B, Theorem for infinite series expansion of characteristic equation. Text C, Original definition of type-reproduction number. Text D, Extension theorem of type-reproduction number. (ZIP)
The data used for this study were collected from grain paddocks located near Mallala on the Adelaide Plains, South Australia (SA) (-34° 26' 59.99" S, 138° 29' 59.99" E) (paddocks A and B,) and near Parkes, Central West, New South Wales (NSW) (33° 8' 12.56'' S, 148° 10' 22.93'' E) (paddocks C and D). In each paddock (n= 4), two independent live-capture trapping grids, each separated by a minimum of 100 m were established (n= 8 trapping grids). On each live trapping grid, 64 single capture Longworth traps (25 × 6.5 × 8.5 cm, Longworth Scientific, Abingdon, UK) were set at 10 m intervals on an 8 x 8 grid. Traps contained polyester fibre bedding and wheat grains for food. They were checked and closed each morning starting at approximately 0630 hours (h) and opened in the evening at 1700 h. Traps are designed for single capture, however during this study some traps had multiple captures on a single trap night. Near Mallala SA (paddocks A and B), trapping data were collected betwee...
From now until 2100, India and China will remain the most populous countries in the world, however China's population decline has already started, and it is on course to fall by around 50 percent in the 2090s; while India's population decline is projected to begin in the 2060s. Of the 10 most populous countries in the world in 2100, five will be located in Asia, four in Africa, as well as the United States. Rapid growth in Africa Rapid population growth across Africa will see the continent's population grow from around 1.5 billion people in 2024 to 3.8 billion in 2100. Additionally, unlike China or India, population growth in many of these countries is not expected to go into decline, and instead is expected to continue well into the 2100s. Previous estimates had projected these countries' populations would be much higher by 2100 (the 2019 report estimated Nigeria's population would exceed 650 million), yet the increased threat of the climate crisis and persistent instability is delaying demographic development and extending population growth. The U.S. as an outlier Compared to the nine other largest populations in 2100, the United States stands out as it is more demographically advanced, politically stable, and economically stronger. However, while most other so-called "advanced countries" are projected to see their population decline drastically in the coming decades, the U.S. population is projected to continue growing into the 2100s. This will largely be driven by high rates of immigration into the U.S., which will drive growth despite fertility rates being around 1.6 births per woman (below the replacement level of 2.1 births per woman), and the slowing rate of life expectancy. Current projections estimate the U.S. will have a net migration rate over 1.2 million people per year for the remainder of the century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population-level cause-deleted average annual income gain as estimated from FE models for 40 diseases (2020 US$ millions).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
While the standard image of the nuclear family with two parents and 2.5 children has persisted in the American imagination, the number of births in the U.S. has steadily been decreasing since 1990, with about 3.6 million babies born in 2023. In 1990, this figure was 4.16 million. Birth and replacement rates A country’s birth rate is defined as the number of live births per 1,000 inhabitants, and it is this particularly important number that has been decreasing over the past few decades. The declining birth rate is not solely an American problem, with EU member states showing comparable rates to the U.S. Additionally, each country has what is called a “replacement rate.” The replacement rate is the rate of fertility needed to keep a population stable when compared with the death rate. In the U.S., the fertility rate needed to keep the population stable is around 2.1 children per woman, but this figure was at 1.67 in 2022. Falling birth rates Currently, there is much discussion as to what exactly is causing the birth rate to decrease in the United States. There seem to be several factors in play, including longer life expectancies, financial concerns (such as the economic crisis of 2008), and an increased focus on careers, all of which are causing people to wait longer to start a family. How international governments will handle falling populations remains to be seen, but what is clear is that the declining birth rate is a multifaceted problem without an easy solution.