Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
View data of the Effective Federal Funds Rate, or the interest rate depository institutions charge each other for overnight loans of funds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effective Federal Funds Rate in the United States remained unchanged at 4.33 percent on Wednesday June 18. This dataset includes a chart with historical data for the United States Effective Federal Funds Rate.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for FOMC Summary of Economic Projections for the Fed Funds Rate, Median (FEDTARMD) from 2025 to 2027 about projection, federal, median, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Federal Way population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Federal Way across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Federal Way was 97,701, a 0.18% decrease year-by-year from 2022. Previously, in 2022, Federal Way population was 97,881, a decline of 1.45% compared to a population of 99,324 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Federal Way increased by 12,421. In this period, the peak population was 100,988 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Federal Way Population by Year. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
US Forest Service Forest Inventory and Analysis National Program.
The Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service provides the information needed to assess America's forests.
As the Nation's continuous forest census, our program projects how forests are likely to appear 10 to 50 years from now. This enables us to evaluate whether current forest management practices are sustainable in the long run and to assess whether current policies will allow the next generation to enjoy America's forests as we do today.
FIA reports on status and trends in forest area and location; in the species, size, and health of trees; in total tree growth, mortality, and removals by harvest; in wood production and utilization rates by various products; and in forest land ownership.
The Forest Service has significantly enhanced the FIA program by changing from a periodic survey to an annual survey, by increasing our capacity to analyze and publish data, and by expanding the scope of our data collection to include soil, under story vegetation, tree crown conditions, coarse woody debris, and lichen community composition on a subsample of our plots. The FIA program has also expanded to include the sampling of urban trees on all land use types in select cities.
For more details, see: https://www.fia.fs.fed.us/library/database-documentation/current/ver70/FIADB%20User%20Guide%20P2_7-0_ntc.final.pdf
Fork this kernel to get started with this dataset.
FIA is managed by the Research and Development organization within the USDA Forest Service in cooperation with State and Private Forestry and National Forest Systems. FIA traces it's origin back to the McSweeney - McNary Forest Research Act of 1928 (P.L. 70-466). This law initiated the first inventories starting in 1930.
Banner Photo by @rmorton3 from Unplash.
Estimating timberland and forest land acres by state.
https://cloud.google.com/blog/big-data/2017/10/images/4728824346443776/forest-data-4.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/10/images/4728824346443776/forest-data-4.png
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://ngda-cadastre-geoplatform.hub.arcgis.com/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g., 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. PAD-US provides a full inventory geodatabase, spatial analysis, statistics, data downloads, web services, poster maps, and data submissions included in efforts to track global progress toward biodiversity protection. PAD-US integrates spatial data to ensure public lands and other protected areas from all jurisdictions are represented. PAD-US version 4.0 includes new and updated data from the following data providers. All other data were transferred from previous versions of PAD-US. Federal updates - The USGS remains committed to updating federal fee owned lands data and major designation changes in regular PAD-US updates, where authoritative data provided directly by managing agencies are available or alternative data sources are recommended. Revisions associated with the federal estate in this version include updates to the Federal estate (fee ownership parcels, easement interest, management designations, and proclamation boundaries), with authoritative data from 7 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census Bureau), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), and the U.S. Forest Service (USFS). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://ngda-gov-units-geoplatform.hub.arcgis.com/pages/federal-lands-workgroup/ ). This includes improved the representation of boundaries and attributes for the National Park Service, U.S. Forest Service, Bureau of Land Management, and U.S. Fish and Wildlife Service lands, in collaboration with agency data-stewards, in response to feedback from the PAD-US Team and stakeholders. Additionally, National Cemetery boundaries were added using geospatial boundary data provided by the U.S. Department of Veterans Affairs and NASA boundaries were added using data contained in the USGS National Boundary Dataset (NBD). State Updates - USGS is committed to building capacity in the state data steward network and the PAD-US Team to increase the frequency of state land and NGO partner updates, as resources allow. State Lands Workgroup ( https://ngda-gov-units-geoplatform.hub.arcgis.com/pages/state-lands-workgroup ) is focused on improving protected land inventories in PAD-US, increase update efficiency, and facilitate local review. PAD-US 4.0 included updates and additions from the following seventeen states and territories: California (state, local, and nonprofit fee); Colorado (state, local, and nonprofit fee and easement); Georgia (state and local fee); Kentucky (state, local, and nonprofit fee and easement); Maine (state, local, and nonprofit fee and easement); Montana (state, local, and nonprofit fee); Nebraska (state fee); New Jersey (state, local, and nonprofit fee and easement); New York (state, local, and nonprofit fee and easement); North Carolina (state, local, and nonprofit fee); Pennsylvania (state, local, and nonprofit fee and easement); Puerto Rico (territory fee); Tennessee (land trust fee); Texas (state, local, and nonprofit fee); Virginia (state, local, and nonprofit fee); West Virginia (state, local, and nonprofit fee); and Wisconsin (state fee data). Additionally, the following datasets were incorporated from NGO data partners: Trust for Public Land (TPL) Parkserve (new fee and easement data); The Nature Conservancy (TNC) Lands (fee owned by TNC); TNC Northeast Secured Areas; Ducks Unlimited (land trust fee); and the National Conservation Easement Database (NCED). All state and NGO easement submissions are provided to NCED. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/programs/gap-analysis-project/science/protected-areas . For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/programs/gap-analysis-project/science/protected-areas . For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-history/ for more information): 1) First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov). 2) Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov). 3) Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov). 4) Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD 5) Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ 6) Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE 7) Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT 8) Revised - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B 9) Revised - April 2024 (Version 4.0) https://doi.org/10.5066/P96WBCHS Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household Saving Rate in the United States decreased to 4.50 percent in May from 4.90 percent in April of 2025. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Federal Heights population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Federal Heights across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Federal Heights was 13,943, a 0.41% decrease year-by-year from 2022. Previously, in 2022, Federal Heights population was 14,001, a decline of 1.50% compared to a population of 14,214 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Federal Heights increased by 1,870. In this period, the peak population was 14,394 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Federal Heights Population by Year. You can refer the same here
This hosted feature layer has been published in RI State Plane Feet NAD 83.The RI Neighborhood Stabilization Program (NSP) Mapping analysis was performed to assist the Office of Housing and Community Development in identifying target areas with both a Foreclosure Rate (Block Group Level) >=6.5% and a Subprime Loan percentage rate >= 1.4% (Zip Code Level). Based on these criteria the following communities were identified as containing such target areas: Central Falls, Cranston, Cumberland, East Providence, Johnston, North Providence, Pawtucket, Providence, Warwick, West Warwick, and Woonsocket. Federal funding, under the Housing and Economic Recovery Act of 2008 (HERA), Neighborhood Stabilization Program (NSP), totaling $19.6 will be expended in these NSP Target Areas to assist in the rehabilitation and redevelopment of abandoned and foreclosed homes, stabilizing communities.The State of Rhode Island distributes funds allocated, giving priority emphasis and consideration to those areas with the greatest need, including those areas with - 1) Highest percentage of home foreclosures; 2) Highest percentage of homes financed by subprime mortgage loans; and 3) Anticipated increases in rate of foreclosure. The RI Office of Housing and Community Development, with the assistance of Rhode Island Housing, utilized the following sources to meet the above requirements. 1) U.S. Department of Housing & Urban Development (HUD) developed foreclosure data to assist grantees in identification of Target Areas. The State utilized HUD's predictive foreclosure rates to identify those areas which are likely to face a significant rise in the rate of home foreclosures. HUD's methodology factored in Home Mortgage Disclosure Act, income, unemployment, and other information in its calculation. The results were analyzed and revealed a high level of consistency with other needs data available. 2) The State obtained subprime mortgage loan information from the Federal Reserve Bank of Boston. Though the data does not include all mortgages, and was only available at the zip code level rather than Census Tract, findings were generally consistent with other need categories. This data was joined to the Foreclosure dataset in order to select areas with both a Foreclosure Rate >=6.5% and a Subprime Loan Rate >=1.4%. 3) The State also obtained, from the Warren Group, actual local foreclosure transaction records. The Warren Group is a source for real estate and banking news and transaction data throughout New England. This entity has analyzed local deed records in assembling information presented. The data set was normalized due to potential limitations. An analysis revealed a high level of consistency with HUD-predictive foreclosure rates.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Personal Saving Rate (PSAVERT) from Jan 1959 to May 2025 about savings, personal, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Interest Rates, Discount Rate for United States (INTDSRUSM193N) from Jan 1950 to Aug 2021 about discount, interest rate, interest, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We study the effects of monetary policy on economic activity separately identifying the effects of a conventional change in the fed funds rate from the policy of forward guidance. We use a structural VAR identified using external instruments from futures market data. The response of output to a fed funds rate shock is found to be consistent with typical monetary VAR analyses. However, the effect of a forward guidance shock that increases long-term interest rates has an expansionary effect on output. This counterintuitive response is shown to be tied to the asymmetric information between the Federal Reserve and the public.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States FRBOP Forecast: NFP: Median: sa: Ave Mo Chg: Plus 4 Qtrs data was reported at 151.667 Person th in Jun 2018. This records a decrease from the previous number of 172.894 Person th for Mar 2018. United States FRBOP Forecast: NFP: Median: sa: Ave Mo Chg: Plus 4 Qtrs data is updated quarterly, averaging 160.667 Person th from Dec 2003 (Median) to Jun 2018, with 59 observations. The data reached an all-time high of 217.318 Person th in Jun 2010 and a record low of 19.806 Person th in Dec 2008. United States FRBOP Forecast: NFP: Median: sa: Ave Mo Chg: Plus 4 Qtrs data remains active status in CEIC and is reported by Federal Reserve Bank of Philadelphia. The data is categorized under Global Database’s USA – Table US.G027: Current Employment Statistics Survey: Employment: Non Farm: sa: Forecast: Federal Reserve Bank of Philadelphia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in the United States increased to 2.40 percent in May from 2.30 percent in April of 2025. This dataset provides - United States Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Federal decision on a temporary additional financing of invalidity insurance by increasing VAT rates ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/vote-bundesbeschluss-ueber-eine-befristete-zusatzfinanzierung-der-invalidenversicherung-durch-anhebung-der-mehrwertsteuersaetze-staatskanzlei-zug on 11 January 2022.
--- Dataset description provided by original source is as follows ---
Final results of the federal vote “Federal decision on a temporary additional financing of invalidity insurance through an increase in VAT rates”, 27 September 2009, canton of Zug, broken down by municipalities.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Russia was last recorded at 20 percent. This dataset provides the latest reported value for - Russia Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.