36 datasets found
  1. TIGER/Line Shapefile, 2021, State, California, Census Tracts

    • catalog.data.gov
    • datasets.ai
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, State, California, Census Tracts [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2021-state-california-census-tracts
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  2. TIGER/Line Shapefile, 2022, State, California, CA, 2020 Census Public Use...

    • catalog.data.gov
    Updated Jan 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, California, CA, 2020 Census Public Use Microdata Area (PUMA) [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-california-ca-2020-census-public-use-microdata-area-puma
    Explore at:
    Dataset updated
    Jan 27, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name. The 2020 PUMAs will appear in the 2022 TIGER/Line Shapefiles.

  3. TIGER/Line Shapefile, Current, State, California, 2020 Census Public Use...

    • catalog.data.gov
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, State, California, 2020 Census Public Use Microdata Area (PUMA) [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-california-2020-census-public-use-microdata-area-puma
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.

  4. N

    California Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in California from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/california-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the California is shown in this column.
    • Year on Year Change: This column displays the change in California population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California Population by Year. You can refer the same here

  5. a

    California Overlapping Cities and Counties and Identifiers with Coastal...

    • hub.arcgis.com
    • data.ca.gov
    • +1more
    Updated Oct 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). California Overlapping Cities and Counties and Identifiers with Coastal Buffers [Dataset]. https://hub.arcgis.com/maps/California::california-overlapping-cities-and-counties-and-identifiers-with-coastal-buffers
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    California Department of Technology
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.

  6. d

    Annual California Sea Otter Census—1985-2014 Spring Census Summary

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census—1985-2014 Spring Census Summary [Dataset]. https://catalog.data.gov/dataset/annual-california-sea-otter-census1985-2014-spring-census-summary
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset represents an archived record of annual California sea otter surveys from 1985-2014. Survey procedures involve counting animals during the "spring survey" -- generally beginning in late April or early May and usually ending in late May early June but may extend into early July, depending on weather conditions. Annual surveys are organized by survey year and within each year, three shapefiles are included: census summary of southern sea otter, extra limit counts of southern sea otter, and range extent of southern sea otter. The surveys, conducted cooperatively by scientists of the U.S. Geological Survey, California Department of Fish and Wildlife, U.S. Fish and Wildlife Service and Monterey Bay Aquarium with the help of experienced volunteers, cover about 375 miles of California coast, from Half Moon Bay south to Santa Barbara. The information gathered may be used by federal and state wildlife agencies in making decisions about the management of this threatened marine mammal. These data, in conjunction with findings from several more in-depth studies, may also provide the necessary information to assess female reproductive rates and changes in reproductive success of the California sea otter population through time. For more information on annual California sea otter surveys, including most current surveys and associated data and corresponding USGS Data Series reports, go to: https://www.sciencebase.gov/catalog/item/5601b6dae4b03bc34f5445ec The GIS shapefile "Census summary of southern sea otter" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring range-wide census. This census has been undertaken each year using consistent methodology involving both ground-based and aerial-based counts. This range-wide census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California. Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al. 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. The GIS shapefile "Extra limit counts of southern sea otters" is a point layer representing the locations of sea otter sightings that fall outside the officially recognized range of the southern sea otter in mainland California. These data were collected during the spring range-wide census. Sea otter distribution in California (the mainland range) is considered to comprise a band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits as defined above. However, a few individual sea otters (almost always males) can frequently be found outside this officially recognized range, and these "extra-limital" animals are also counted during the census. The GIS shapefile "Range extent of southern sea otters" is a simple polyline representing the geographic distribution of the southern sea otter in mainland California, based on data collected during the spring range-wide census. The spring 2011 survey was incomplete due to weather conditions and there were no “extra-limital” sightings of otters during the spring 1992 survey, hence no data or shapefile for “Extra limit counts 1992.” For ease of access, an additional CSV file of the census summary from 1985-2014 is provided: "AnnualCaliforniaSeaOtter_Census_summary_1985_2014.csv" References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  7. C

    2020 California Neighborhoods Count: RAND Report

    • data.ca.gov
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2023). 2020 California Neighborhoods Count: RAND Report [Dataset]. https://data.ca.gov/dataset/2020-california-neighborhoods-count-rand-report
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Jun 29, 2023
    Dataset provided by
    Calif. Dept. of Finance Demographic Research Unit
    Authors
    California Department of Finance
    Area covered
    California
    Description

    The U.S. Constitution mandates that the federal government count all persons living in the United States every ten years. The census is critical to states because its results are used to reapportion seats in the U.S. House of Representatives; guide redistricting; and form the basis for allocating federal funds, such as those used for schools, health services, child care, highways, and emergency services.

    In response to long-standing concerns about the accuracy of census data and about a possible undercount, a group of researchers conducted the California Neighborhoods Count (CNC) — the first-ever independent, survey-based enumeration to directly evaluate the accuracy of the U.S. Census Bureau's population totals for a subset of California census blocks.

    This 2020 research was intended to produce parallel estimates of the 2020 Census population and housing unit totals at the census block level, employing the same items as the census and using enhanced data collection strategies and exploration of imputation methods. Although the CNC was intended to largely replicate census data collection processes, there were a few methodological differences: For example, much of the address canvassing for the 2020 Census was done in-office, whereas the CNC team undertook a complete in-person address-listing operation that included interviews with residents and door-to-door verification of each structure.

    In this report, the researchers detail their methodology and present the enumeration results. They compare the 2020 Census counts with the CNC estimates, describe limitations of their data collection effort, and offer considerations for future data collection.

  8. a

    San Francisco Bay Region 2020 Census Tracts

    • hub.arcgis.com
    • opendata.mtc.ca.gov
    Updated Dec 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2021). San Francisco Bay Region 2020 Census Tracts [Dataset]. https://hub.arcgis.com/datasets/MTC::san-francisco-bay-region-2020-census-tracts/explore
    Explore at:
    Dataset updated
    Dec 2, 2021
    Dataset authored and provided by
    MTC/ABAG
    Area covered
    Description

    2020 Census tracts for the San Francisco Bay Region. Features were extracted from California 2021 TIGER/Line shapefile by the Metropolitan Transportation Commission.Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses.Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline.Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy.In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.The Census Bureau uses suffixes to help identify census tract changes for comparison purposes. Local participants have an opportunity to review the existing census tracts before each census. If local participants split a census tract, the split parts usually retain the basic number, but receive different suffixes. In a few counties, local participants request major changes to, and renumbering of, the census tracts. Changes to individual census tract boundaries usually do not result in census tract numbering changes.Relationship to Other Geographic Entities—Within the standard census geographic hierarchy, census tracts never cross state or county boundaries, but may cross the boundaries of county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian, Alaska Native, and Native Hawaiian areas.

  9. g

    TIGER/Line Shapefile, Current, State, California, 2020 Census Public Use...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TIGER/Line Shapefile, Current, State, California, 2020 Census Public Use Microdata Area (PUMA) | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_tiger-line-shapefile-current-state-california-2020-census-public-use-microdata-area-puma/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    California
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.

  10. 2020 Cartographic Boundary File (SHP), 2020 Public Use Microdata Areas for...

    • catalog.data.gov
    • datasets.ai
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (SHP), 2020 Public Use Microdata Areas for California, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-shp-2020-public-use-microdata-areas-for-california-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.

  11. c

    California County Boundaries and Identifiers

    • gis.data.ca.gov
    • data.ca.gov
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). California County Boundaries and Identifiers [Dataset]. https://gis.data.ca.gov/items/60b7e0f3d33b4064a4b43bf14589bfe3
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    California Department of Technology
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This layer removes the coastal buffer polygons. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal Buffers (this dataset)Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing excludes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections. Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor.CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information.CDTFA's source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that

  12. 2020 Cartographic Boundary File (KML), 2020 Public Use Microdata Areas for...

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (KML), 2020 Public Use Microdata Areas for California, 1:500,000 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/2020-cartographic-boundary-file-kml-2020-public-use-microdata-areas-for-california-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.

  13. d

    Tule Elk Census Data - San Luis National Wildlife Refuge - 1984-2022

    • datasets.ai
    • data.cnra.ca.gov
    • +2more
    53, 57
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Tule Elk Census Data - San Luis National Wildlife Refuge - 1984-2022 [Dataset]. https://datasets.ai/datasets/tule-elk-census-data-san-luis-national-wildlife-refuge-1984-2022-a794a
    Explore at:
    53, 57Available download formats
    Dataset authored and provided by
    State of California
    Description

    Staff conduct an annual census of the elk in the enclosure at San Luis National Wildlife Refuge. The data includes the number of elk and the composition of the group.

    This data and metadata were submitted by California Department of Fish and Wildlife (CDFW) Staff though the Data Management Plan (DMP) framework with the id: DMP000494. For more information, please visit https://wildlife.ca.gov/Data/Sci-Data.

  14. Medical Service Study Areas

    • healthdata.gov
    • data.ca.gov
    • +3more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Areas [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Areas/nvx2-hzzm
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  15. N

    California annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a508175b-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in California. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In California, the median income for all workers aged 15 years and older, regardless of work hours, was $49,513 for males and $35,108 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in California. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thestate of California.

    - Full-time workers, aged 15 years and older: In California, among full-time, year-round workers aged 15 years and older, males earned a median income of $72,629, while females earned $63,384, resulting in a 13% gender pay gap among full-time workers. This illustrates that women earn 87 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the state of California.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in California.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California median household income by race. You can refer the same here

  16. d

    Annual California Sea Otter Census: 2019 Census Summary Shapefile

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census: 2019 Census Summary Shapefile [Dataset]. https://catalog.data.gov/dataset/annual-california-sea-otter-census-2019-census-summary-shapefile
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The GIS shapefile Census_sum_2019 provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2019 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square kilometer of habitat), linear density (otters per kilometer of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2019). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60 meter isobath: this depth range includes over 99 percent of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined by combining independent otters within a moving window of 10-kilometer stretches of coastline (as measured along the 10-meter bathymetric contour; 20 contiguous ATOS intervals each) and taking the northern and southern ATOS values, respectively, of the northernmost and southernmost stretches in which at least five otters were counted for at least 2 consecutive spring surveys during the last 3 years. The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  17. California Overlapping Cities and Counties and Identifiers

    • data.ca.gov
    • gis.data.ca.gov
    • +1more
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California Overlapping Cities and Counties and Identifiers [Dataset]. https://data.ca.gov/dataset/california-overlapping-cities-and-counties-and-identifiers
    Explore at:
    xlsx, gpkg, gdb, zip, kml, txt, html, geojson, csv, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:

    • Metadata is missing or incomplete for some layers at this time and will be continuously improved.
    • We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.
    This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose

    County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. Place Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places (Coming Soon)
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system
    • Place Name: CDTFA incorporated (city) or county name
    • County: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information System
    • Place Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area names
    • CNTY Abbr: CalTrans Division of Local Assistance abbreviations of county names
    • Area_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Accuracy

    CDTFA"s source data notes the following about accuracy:

    City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI =

  18. d

    Annual California Sea Otter Census: 2017 Census Summary Shapefile

    • search.dataone.org
    • data.usgs.gov
    • +3more
    Updated Oct 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Tim Tinker; Brian B. Hatfield (2017). Annual California Sea Otter Census: 2017 Census Summary Shapefile [Dataset]. https://search.dataone.org/view/841adf2f-2d45-4299-90a1-bd0a6798fdb9
    Explore at:
    Dataset updated
    Oct 5, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    M. Tim Tinker; Brian B. Hatfield
    Time period covered
    Apr 30, 2017 - Jul 12, 2017
    Area covered
    Variables measured
    AREA, Year, ZONE, ACRES, DEPTH, HAB_ID, ATOS_ID, POLY_ID, Sect_ID, dens_sm, and 6 more
    Description

    The GIS shapefile "Census summary of southern sea otter 2017" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2017 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2017). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  19. CA Geographic Boundaries

    • data.ca.gov
    • s.cnmilf.com
    • +1more
    shp
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Geographic Boundaries [Dataset]. https://data.ca.gov/dataset/ca-geographic-boundaries
    Explore at:
    shp(2597712), shp(136046), shp(10153125)Available download formats
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.

  20. Low-Income or Disadvantaged Communities Designated by California

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). Low-Income or Disadvantaged Communities Designated by California [Dataset]. https://data.cnra.ca.gov/dataset/low-income-or-disadvantaged-communities-designated-by-california
    Explore at:
    zip, geojson, csv, arcgis geoservices rest api, html, kmlAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.


    Data downloaded in May 2022 from https://webmaps.arb.ca.gov/PriorityPopulations/.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, State, California, Census Tracts [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2021-state-california-census-tracts
Organization logo

TIGER/Line Shapefile, 2021, State, California, Census Tracts

Explore at:
Dataset updated
Nov 1, 2022
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

Search
Clear search
Close search
Google apps
Main menu