The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In demographics, the world population is the total number of humans currently living, and was estimated to have reached 7,800,000,000 people as of March 2020. It took over 2 million years of human history for the world's population to reach 1 billion, and only 200 years more to reach 7 billion. The world population has experienced continuous growth following the Great Famine of 1315–1317 and the end of the Black Death in 1350, when it was near 370 million. The highest global population growth rates, with increases of over 1.8% per year, occurred between 1955 and 1975 – peaking to 2.1% between 1965 and 1970.[7] The growth rate declined to 1.2% between 2010 and 2015 and is projected to decline further in the course of the 21st century. However, the global population is still increasing[8] and is projected to reach about 10 billion in 2050 and more than 11 billion in 2100.
Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. Annual population growth rate. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
Total population growth rates are calculated on the assumption that rate of growth is constant between two points in time. The growth rate is computed using the exponential growth formula: r = ln(pn/p0)/n, where r is the exponential rate of growth, ln() is the natural logarithm, pn is the end period population, p0 is the beginning period population, and n is the number of years in between. Note that this is not the geometric growth rate used to compute compound growth over discrete periods. For information on total population from which the growth rates are calculated, see total population (SP.POP.TOTL).
Derived from total population. Population source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision, ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme.
How many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I am developing my data science skills in areas outside of my previous work. An interesting problem for me was to identify which factors influence life expectancy on a national level. There is an existing Kaggle data set that explored this, but that information was corrupted. Part of the problem solving process is to step back periodically and ask "does this make sense?" Without reasonable data, it is harder to notice mistakes in my analysis code (as opposed to unusual behavior due to the data itself). I wanted to make a similar data set, but with reliable information.
This is my first time exploring life expectancy, so I had to guess which features might be of interest when making the data set. Some were included for comparison with the other Kaggle data set. A number of potentially interesting features (like air pollution) were left off due to limited year or country coverage. Since the data was collected from more than one server, some features are present more than once, to explore the differences.
A goal of the World Health Organization (WHO) is to ensure that a billion more people are protected from health emergencies, and provided better health and well-being. They provide public data collected from many sources to identify and monitor factors that are important to reach this goal. This set was primarily made using GHO (Global Health Observatory) and UNESCO (United Nations Educational Scientific and Culture Organization) information. The set covers the years 2000-2016 for 183 countries, in a single CSV file. Missing data is left in place, for the user to decide how to deal with it.
Three notebooks are provided for my cursory analysis, a comparison with the other Kaggle set, and a template for creating this data set.
There is a lot to explore, if the user is interested. The GHO server alone has over 2000 "indicators". - How are the GHO and UNESCO life expectancies calculated, and what is causing the difference? That could also be asked for Gross National Income (GNI) and mortality features. - How does the life expectancy after age 60 compare to the life expectancy at birth? Is the relationship with the features in this data set different for those two targets? - What other indicators on the servers might be interesting to use? Some of the GHO indicators are different studies with different coverage. Can they be combined to make a more useful and robust data feature? - Unraveling the correlations between the features would take significant work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
The World Values Survey (WVS) is an international research program devoted to the scientific and academic study of social, political, economic, religious and cultural values of people in the world. The project’s goal is to assess which impact values stability or change over time has on the social, political and economic development of countries and societies. The project grew out of the European Values Study and was started in 1981 by its Founder and first President (1981-2013) Professor Ronald Inglehart from the University of Michigan (USA) and his team, and since then has been operating in more than 120 world societies. The main research instrument of the project is a representative comparative social survey which is conducted globally every 5 years. Extensive geographical and thematic scope, free availability of survey data and project findings for broad public turned the WVS into one of the most authoritative and widely-used cross-national surveys in the social sciences. At the moment, WVS is the largest non-commercial cross-national empirical time-series investigation of human beliefs and values ever executed. World Values Survey Interview Mode of collection: mixed mode Face-to-face interview: CAPI (Computer Assisted Personal Interview) Face-to-face interview: PAPI (Paper and Pencil Interview) Telephone interview: CATI (Computer Assisted Telephone Interview) Self-administered questionnaire: CAWI (Computer-Assisted Web Interview) Self-administered questionnaire: Paper In all countries, fieldwork was conducted on the basis of detailed and uniform instructions prepared by the WVS scientific advisory committee and WVSA secretariat. The main data collection mode in WVS 2017-2021 is face to face (interviewer-administered). Several countries employed mixed-mode approach to data collection: USA (CAWI; CATI); Australia and Japan (CAWI; postal survey); Hong Kong SAR (PAPI; CAWI); Malaysia (CAWI; PAPI). The WVS Master Questionnaire was provided in English and each national survey team had to ensure that the questionnaire was translated into all the languages spoken by 15% or more of the population in the country. A central team monitored the translation process. The target population is defined as: individuals aged 18 (16/17 is acceptable in the countries with such voting age) or older (with no upper age limit), regardless of their nationality, citizenship or language, that have been residing in the [country/ territory] within private households for the past 6 months prior to the date of beginning of fieldwork (or in the date of the first visit to the household, in case of random-route selection). The sampling procedures differ from country to country; probability sample: Multistage Sample, Probability Sample, Simple Random Sample Representative single stage or multi-stage sampling of the adult population of the country 18 (16) years old and older was used for the WVS 2017-2021. Sample size was set as effective sample size: 1200 for countries with population over 2 million, 1000 for countries with population less than 2 million. Countries with great population size and diversity (e.g. India, China, USA, Russia, Brazil etc.) are requirred to reach an effective sample of N=1500 or larger. Only 2 countries (Argentina, Chile) deviated from the guidelines and planned with an effective sample size below the set threshold. Sample design and other relevant information about sampling were reviewed by the WVS Scientific Advisory Committee and approved prior to contracting of fieldwork agency or starting of data collection. The sampling was documented using the Survey Design Form delivered by the national teams which included the description of the sampling frame and each sampling stage as well as the calculation of the planned gross and net sample size to achieve the required effective sample. Additionally, it included the analytical description of the inclusion probabilities of the sampling design that are used to calculate design weights.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M2 in the United States increased to 21942 USD Billion in May from 21862.40 USD Billion in April of 2025. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset for the article "A Predictive Method to Improve the Effectiveness of Twitter Communication in a Cultural Heritage Scenario".
Abstract:
Museums are embracing social technologies in the attempt to broaden their audience and to engage people. Although social communication seems an easy task, media managers know how hard it is to reach millions of people with a simple message. Indeed, millions of posts are competing every day to get visibility in terms of likes and shares and very little research focused on museums communication to identify best practices. In this paper, we focus on Twitter and we propose a novel method that exploits interpretable machine learning techniques to: (a) predict whether a tweet will likely be appreciated by Twitter users or not; (b) present simple suggestions that will help enhancing the message and increasing the probability of its success. Using a real-world dataset of around 40,000 tweets written by 23 world famous museums, we show that our proposed method allows identifying tweet features that are more likely to influence the tweet success.
Code to run a selection of experiments is available at https://github.com/rmartoglia/predict-twitter-ch
Dataset structure
The dataset contains the dataset used in the experiments of the above research paper. Only the extracted features for the museum tweet threads (and not the message full text) are provided and needed for the analyses.
We selected 23 well known world spread art museums and grouped them into five groups: G1 (museums with at least three million of followers); G2 (museums with more than one million of followers); G3 (museums with more than 400,000 followers); G4 (museums with more that 200,000 followers); G5 (Italian museums). From these museums, we analyzed ca. 40,000 tweets, with a number varying from 5k ca. to 11k ca. for each museum group, depending on the number of museums in each group.
Content features: these are the features that can be drawn form the content of the tweet itself. We further divide such features in the following two categories:
– Countable: these features have a value ranging into different intervals. We take into consideration: the number of hashtags (i.e., words preceded by #) in the tweet, the number of URLs (i.e., links to external resources), the number of images (e.g., photos and graphical emoticons), the number of mentions (i.e., twitter accounts preceded by @), the length of the tweet;
– On-Off : these features have binary values in {0, 1}. We observe whether the tweet has exclamation marks, question marks, person names, place names, organization names, other names. Moreover, we also take into consideration the tweet topic density: assuming that the involved topics correspond to the hashtags mentioned in the text, we define a tweet as dense of topics if the number of hashtags it contains is greater than a given threshold, set to 5. Finally, we observe the tweet sentiment that might be present (positive or negative) or not (neutral).
Context features: these features are not drawn form the content of the tweet itself and might give a larger picture of the context in which the tweet was sent. Namely, we take into consideration the part of the day in which the tweet was sent (morning, afternoon, evening and night respectively from 5:00am to 11:59am, from 12:00pm to 5:59pm, from 6:00pm to 10:59pm and from 11pm to 4:59am), and a boolean feature indicating whether the tweet is a retweet or not.
User features: these features are proper of the user that sent the tweet, and are the same for all the tweets of this user. Namely we consider the name of the museum and the number of followers of the user.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in China was worth 18743.80 billion US dollars in 2024, according to official data from the World Bank. The GDP value of China represents 17.65 percent of the world economy. This dataset provides - China GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
In 2023, the global database performance monitoring software tools market size was valued at approximately USD 1.8 billion. With a robust compound annual growth rate (CAGR) of 10.5%, it is projected to reach an impressive USD 4.5 billion by 2032. The growth of this market is primarily driven by the increasing demand for real-time data analytics and the need to maintain optimal database performance across various industries. The proliferation of data generated by businesses, along with the rising adoption of cloud computing technologies, acts as a catalyst for the expansion of this market.
One of the significant growth factors for the database performance monitoring software tools market is the increasing complexity of database environments. As organizations transition from traditional databases to more complex, distributed systems, the need for advanced monitoring tools has become essential. These tools provide critical insights into database performance, helping businesses optimize operations, reduce downtime, and ensure efficient data management. The rise of technologies like artificial intelligence and machine learning further enhances the capabilities of these software tools, allowing for predictive analytics and automated performance optimization, which are crucial in today's fast-paced business environment.
Another driving force behind the market's growth is the escalating demand for better user experience and service delivery. Enterprises are increasingly focusing on improving their database performance to ensure faster data retrieval and processing, which directly impacts customer satisfaction and retention. Additionally, regulatory compliance requirements across various sectors necessitate the use of sophisticated monitoring solutions to maintain data integrity and security. The integration of IoT devices and the explosion of big data analytics are also contributing to the demand for comprehensive database performance monitoring solutions.
Furthermore, the ongoing digital transformation initiatives across industries are fostering the growth of the database performance monitoring software tools market. Organizations are investing in digital technologies to enhance their operational efficiency and gain competitive advantages. As part of these initiatives, the need to monitor and manage database performance has become more pronounced. The shift towards cloud-based solutions and the increasing adoption of DevOps practices are also encouraging enterprises to deploy advanced monitoring tools that can seamlessly integrate with their existing IT infrastructure, thereby driving market growth.
In the realm of database management, Database Comparison Software plays a pivotal role in ensuring data consistency and integrity across various platforms. As organizations increasingly rely on complex database systems, the ability to compare and synchronize data becomes essential. This software facilitates the identification of discrepancies between databases, enabling IT teams to rectify issues swiftly and maintain seamless operations. By automating the comparison process, businesses can save time and resources, reducing the risk of human error and enhancing overall efficiency. As the demand for robust data management solutions grows, the integration of Database Comparison Software into existing IT infrastructures is becoming a strategic priority for many enterprises.
The regional outlook of the database performance monitoring software tools market underscores a strong growth trajectory in North America, which holds the largest market share due to the presence of key industry players and advanced technological infrastructure. The Asia Pacific region is anticipated to witness the highest growth rate, driven by rapid industrialization, increasing IT investments, and a surge in cloud computing adoption. Europe and Latin America are also expected to experience significant growth as enterprises in these regions continue to adopt digital solutions to optimize their database management processes.
The database performance monitoring software tools market is segmented into two primary components: software and services. Within the software segment, there is an increasing demand for comprehensive solutions that offer real-time monitoring, advanced analytics, and automated alerts to proactively address performance issues. As databases become more complex, organizations a
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx
The REACH Turkana WASH Household Survey was conducted in October 2017 to collect quantitative data on various indicators of multidimensional poverty, the state of drinking water services and sanitation facilities, and priority concerns for development. The survey was carried out in Lodwar town and its peripheral areas in Turkana Central subcounty of Turkana county in northwest Kenya. The survey was administered to 909 randomly selected households in KiSwahili through an electronic form developed in ONA (https://ona.io/), and was conducted by 10 trained local enumerators.REACH is a global research programme to improve water security for the poor by delivering world-class science that transforms policy and practice. Living in poverty often means a struggle for water security. Rapid urban growth, unregulated pollution from industry, extreme floods and droughts, lack of reliable and safe drinking water, and increasing damage to water ecosystems threaten economies and undermine the lives of the poor. Improving water security is an important pathway to sustainable growth and poverty reduction. However, better evidence is needed to guide institutional and infrastructure investments which unlock growth opportunities and help people move out of poverty. The REACH programme will improve water security for over ten million poor people by: -generating new evidence on water security through an innovative, interdisciplinary, risk-based approach -establishing science, practitioner and enterprise partnerships to ground research in approaches that will benefit the poor building capacity and networks for the next generation of water managers and scientists in Africa and South Asia. REACH is a nine-year programme (2015-2024) led by Oxford University with international consortium of partners and funded with UK Aid Direct from the UK Government’s Foreign, Commonwealth & Development Office. The survey was administered to 909 households randomly selected from 2 wards in Turkana central sub-county. The survey was administered in KiSwahili through an electronic form developed in ONA (https://ona.io/), and was conducted by 10 trained local enumerators.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in Canada was worth 2241.25 billion US dollars in 2024, according to official data from the World Bank. The GDP value of Canada represents 2.11 percent of the world economy. This dataset provides - Canada GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global database automation software market size in 2023 is projected at approximately USD 1.8 billion, and it is anticipated to reach around USD 3.9 billion by 2032, growing at a CAGR of 9.2% during the forecast period. The robust growth can be attributed to various factors, including the increasing need for businesses to manage large volumes of data efficiently, the rise of cloud computing, and the rapid adoption of automation technologies in a variety of industries.
The growing emphasis on reducing operational costs is one of the primary factors propelling the market. Organizations are continuously looking for ways to enhance productivity while minimizing costs. Database automation software helps in achieving this by automating routine database management tasks such as backup, recovery, and performance tuning. This automation leads to significant time and cost savings, thereby driving the market. Additionally, the software minimizes human errors, which can be costly and detrimental to business operations, further fueling its adoption.
Another critical growth driver is the increasing complexity of database environments. The surge in big data, IoT, and artificial intelligence applications has led to more complex and large-scale database systems. Managing these vast and complex databases manually can be incredibly challenging and prone to errors. Database automation software simplifies these processes by providing automated solutions for database configuration, monitoring, and maintenance, thereby making it easier to manage and optimize database performance.
Furthermore, the rapid adoption of cloud computing is significantly boosting the database automation software market. Cloud-based databases are becoming increasingly popular due to their scalability, flexibility, and cost-effectiveness. Database automation software provides seamless integration with cloud services, enabling businesses to efficiently manage their cloud databases. The capabilities of database automation tools to offer real-time analytics and ensure data accuracy in cloud environments are some of the other factors driving the market growth.
As organizations continue to navigate the complexities of modern data environments, the role of Database Development and Management Tools Software becomes increasingly vital. These tools are designed to streamline the process of database creation, modification, and maintenance, allowing businesses to focus on strategic objectives rather than routine database tasks. By leveraging such software, companies can ensure that their databases are not only efficient but also scalable and secure. This is particularly important in today's data-driven world, where the ability to quickly adapt to changing data requirements can provide a competitive edge. The integration of these tools with database automation software further enhances their capabilities, providing a comprehensive solution for managing complex database environments.
Regionally, North America holds a significant share of the database automation software market due to the early adoption of advanced technologies and the presence of key market players. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by the rapid industrialization, increasing investments in IT infrastructure, and the growing adoption of cloud-based solutions in countries like China and India.
The database automation software market can be segmented into two primary components: software and services. The software segment includes tools and platforms specifically designed for automating database tasks. These tools typically feature functionalities such as automated provisioning, configuration, patching, upgrades, and monitoring. The growing need for efficient database management solutions that can handle complex and large-scale database environments is driving the demand for database automation software. Companies are increasingly investing in advanced software solutions to optimize their database performance and ensure data accuracy.
On the other hand, the services segment encompasses various services associated with the implementation, integration, and maintenance of database automation software. This includes consulting services, managed services, and training and support services. As organizations seek to leverage the full
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in the United Kingdom was worth 3643.83 billion US dollars in 2024, according to official data from the World Bank. The GDP value of the United Kingdom represents 3.43 percent of the world economy. This dataset provides the latest reported value for - United Kingdom GDP - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
This data collection relates to project 3.4 of the Centre for Global Higher Education: The transformative potential of MOOCs and contrasting online pedagogies. The response of higher education systems to the possibilities of digital technologies has been sporadic and localised. System-level initiatives relate more to administration and research than to education, while institution-level responses focus mainly on installing virtual learning environments. One area where digital innovation in HE has been rapid and large-scale is the phenomenon of the spread of massive, open, online courses (MOOCs). The top universities in the US, a few in the UK, the EU, the Far East, Australia, and now also in parts of the Global South, have experimented with this form of HE. The transformative potential of MOOCs, while widely forecast, is still uncertain, for several reasons: MOOCs have done little to transform undergraduate education, as some 80 per cent of participants are highly qualified professionals. MOOC affordances and the large-scale participation rates are incompatible with the personal nurturing and scaffolding that supports high quality student learning. Universities and platform developers are still developing the business models they need to make MOOCs sustainable, and financially viable. In order to explore what features of MOOCs have most potential to transform Higher Education, in depth interviews with MOOC participants were conducted online.The last two generations have seen a remarkable world-wide transformation of higher education (HE) into a core social sector with continually expanding local and global reach. Most nations are moving towards, or have already become, 'high participation' HE systems in which the majority of people will be educated to tertiary level. In the UK HE is at the same time a pillar of science and the innovation system, a primary driver of productivity at work, a major employer and a mainstay of cities and regions, and a national export industry where 300,000 non-EU students generated over £7 billion in export-related earnings for the UK in 2012-13. In 2012, 60 per cent of UK school leavers were expected to graduate from tertiary education over the lifetime, 45 per cent at bachelor degree level, compared to OECD means of 53/39 per cent. Higher education and the scientific research associated with universities have never been more important to UK society and government. HE is large and inclusive with a key role in mediating the future. Yet it is poorly understood. Practice has moved ahead of social science. There has been no integrated research centre dedicated to this important part of the UK. The Centre for Engaged Global Higher Education (CEGHE), which has been funded initially for five years by the Economic and Social Research Council (ESRC), now fills that gap. On behalf of the ESRC CEGHE conducts and disseminates research on all aspects of higher education (HE), in order to enhance student learning and the contributions of Higher Education Institutions (HEIs) to their communities; develop the economic, social and global engagement of and impacts of UK HE; and provide data resources and advice for government and stakeholder organisations in HE in the four nations of the UK and worldwide. CEGHE is organised in three closely integrated research programmes that are focused respectively on global, national-system and local aspects of HE. CEGHE's team of researchers work on problems and issues with broad application to the improvement of HE; develop new theories about and ways of researching HE and its social and economic contributions; and respond also to new issues as they arise, within the framework of its research programmes. An important part of CEGHE's work is the preparation and provision of data, briefings and advice to national and international policy makers, for HEIs themselves, and for UK organisations committed to fostering HE and its engagement with UK communities and stakeholders. CEGHE's seminars and conferences are open to the public and it is dedicated to disseminating its research findings on a broad basis through published papers, media articles and its website and social media platform. CEGHE is led by Professor Simon Marginson, one of the world's leading researchers on higher education matters with a special expertise in global and international aspects of the sector. It works with partner research universities in Sheffield, Lancaster, Ireland, Australia, South Africa, Netherlands, China, Hong Kong SAR, Japan and USA. Among the issues currently the subject of CEGHE research projects are inquiries into ways and means of measuring and enhancing HE's contribution to the public good, university-industry collaboration in research, the design of an optimal system of tuition loans, a survey of the effects of tuition debt on the life choices of graduates such as investment in housing and family formation, the effects of widening participation on social opportunities in HE especially for under-represented social groups, trends and developments in HE in Europe and East Asia and the implications for UK HE, the emergence of new HE providers in the private and FE sectors, the future academic workforce in the UK and the skills that will be needed, student learning and knowledge in science and engineering, and developments in online HE
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.