The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
The USGS’s FORE-SCE model was used to produce unprecedented landscape projections for the Prairie Potholes region of the northern Great Plains of the United States. The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (29 land use and land cover classes), 3) broad spatial extent (covering much of the Great Plains), 4) use of real land ownership boundaries to ensure realistic representation of landscape patterns, and 5) representation of both anthropogenic land use and natural vegetation change. A variety of scenarios were modeled from 2014 to 2100, with decadal timesteps (i.e., 2014, 2020, 2030, etc.). Modeled land use and natural vegetation classes were responsive to projected future changes in environmental conditions, including changes in groundwater and water access. Eleven primary land-use scenarios were modeled, from four different scenario families. The land-use scenarios focused on socioeconomic impacts on anthropogenic land use (demographics, energy use, agricultural economics, and other socioeconomic considerations). The following provides a brief summary of the 11 major land-use scenarios. 1) Business-as-usual - Based on an extrapolation of recent land-cover trends as derived from remote-sensing data. Overall trends were provided by 2001 to 2011 change in the National Land Cover Database, while change in crop types were extrapolated from 2008 to 2014 change in the Cropland Data Layer. Overall the scenario is marked by expansion of high-value traditional crops (corn, soybeans, cotton), with a concurrent decline in dryland wheat and some other lower-value crops. 2) Billion Ton Update scenario ($40 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update (BTU). The $40 scenario represents likely agricultural conditions under an assumed farmgate price of $40 per dry ton of biomass (for the production of biofuel). This is the least aggressive BTU scenario for placing "perennial grass" (for biofuel feedstock) on the landscape. 3) Billion Ton Update scenario ($60 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update. The $60 scenario represents likely agricultural conditions under an assumed farmgate price of $60 per dry ton of biomass (for the production of biofuel). At the higher farmgate price, the perennial grass class expands dramatically. 4) Billion Ton Update scenario ($80 farmgate price) - This scenario is based on US Department of Energy biofuel scenarios from the Billion Ton Update. The $80 scenario represents likely agricultural conditions under an assumed farmgate price of $80 per dry ton of biomass (for the production of biofuel). With the high farmgate price, this scenario shows the highest expansion of perennial grass among the 11 modeled scenarios. 5) GCAM Reference scenario - Based on global-scale scenarios from the GCAM model, the "reference" scenario provides a likely landscape under a world without specific carbon or climate mitigation efforts. As such, it's another form of a "business-as-usual" scenario. 6) GCAM 4.5 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 4.5 model represents a mid-level mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of ~4.5 W/m2 by 2100. Agriculture becomes even more concentrated in the Great Plains and Midwestern US, resulting in substantial increases in cropland (including perennial grass used as feedstock for cellulosic biofuel production). 7) GCAM 2.6 scenario - Based on global-scale scenarios from the GCAM model, the GCAM 2.6 model represents a very aggressive mitigation scenario, where carbon payments and other mitigation efforts result in a net radiative forcing of only ~2.6 W/m2 by 2100. Agriculture becomes even more concentrated in the Great Plains and Midwestern US, resulting in substantial increases in cropland (including perennial grass used as feedstock for cellulosic biofuel production). 8) SRES A1B scenario - A scenario consistent with the Intergovernmental Panel on Climate Change (IPCC's) Special Report on Emissions Scenarios (SRES) A1B storyline. In the A1B scenario, economic activity is prioritized over environmental conservation. Agriculture expands substantially, including use of perennial grasses for biofuel production. 9) SRES A2 scenario - A scenario consistent with the IPCC's SRES A2 storyline. In the A2 scenario, global population levels reach 15 billion by 2100. Economic activity is prioritized over environmental conservation. This scenario has the highest overall expansion of traditional cropland, given the very high demand for foodstuffs and other agricultural commodities. 10) SRES B1 scenario - A scenario consistent with the IPCC's SRES B1 storyline. In the B1 scenario, environmental conservation is valued, as is regional cooperation. Much less agricultural expansion occurs as compared to the A1B or A2 scenarios. 11) SRES B2 scenario - A scenario consistent with the IPCC's SRES B2 storyline. In the B2 scenario, environmental conservation is highly valued. Of the eleven modeled scenarios, the B2 scenarios has the smallest overall agricultural footprint (traditional cropland, hay/pasture, perennial grasses). For each of the eleven land-use scenarios, three alternative climate / vegetation scenarios were modeled, resulting in 33 unique scenario combinations. The alternative vegetation scenarios represent the potential changes in quantity and distribution of the major vegetation classes that were modeled (grassland, shrubland, deciduous forest, mixed forest, and evergreen forest), as a response to potential future climate conditions. The three alternative vegetation scenarios correspond to climate conditions consistent with 1) The Intergovernmental Panel on Climate Change (IPCC's) Representative Concentration Pathway (RCP) 8.5 scenario (a scenario of high climate change), 2) the RCP 4.5 scenario (a mid-level climate change scenario), and 3) a mid-point climate that averages RCP4.5 and RCP8.5 conditions Data are provided here for each of the 33 possible scenario combinations. Each scenario file is provided as a zip file containing 1) starting 2014 land cover for the region, and 2) decadal timesteps of modeled land-cover from 2020 through 2100. The "attributes" section of the metadata provides a key for identifying file names associated with each of the 33 scenario combinations.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
Switzerland is leading the ranking by population share with mobile internet access , recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.