13 datasets found
  1. r

    Early Indicators of Later Work Levels Disease and Death (EI) - Union Army...

    • rrid.site
    • scicrunch.org
    • +3more
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets [Dataset]. http://identifiers.org/RRID:SCR_008921
    Explore at:
    Dataset updated
    Jun 17, 2025
    Description

    A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836

  2. N

    Dead Lake Township, Minnesota Population Breakdown by Gender Dataset: Male...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Dead Lake Township, Minnesota Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/dead-lake-township-mn-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Dead Lake Township
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Dead Lake township by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Dead Lake township across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 51.1% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Dead Lake township is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Dead Lake township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dead Lake township Population by Race & Ethnicity. You can refer the same here

  3. Health Inequality Project

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  4. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  5. C

    Road Traffic Injuries

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    pdf, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Road Traffic Injuries [Dataset]. https://data.chhs.ca.gov/dataset/road-traffic-injuries-2002-2010
    Explore at:
    xlsx(43926033), pdf(308329), xlsx, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Health
    Description

    This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  6. Transportation to Work

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    pdf, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Transportation to Work [Dataset]. https://data.chhs.ca.gov/dataset/transportation-to-work-2000-2006-2010
    Explore at:
    xlsx(22751089), pdf, xlsx, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  7. VDH PUD Chronic Disease Mortality by Demographics

    • opendata.winchesterva.gov
    • data.virginia.gov
    csv
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia State Data (2025). VDH PUD Chronic Disease Mortality by Demographics [Dataset]. https://opendata.winchesterva.gov/dataset/vdh-pud-chronic-disease-mortality-by-demographics
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Virginia Department of Health
    Authors
    Virginia State Data
    Description

    This dataset includes count and age-adjusted rate per 100,000 population of mortality (death) in Virginia for 9 chronic conditions by year and by demographic groups (i.e., age, race/ethnicity, and sex). Age group values include 0 to 17 years, 18 to 44 years, 45 to 54 years, 55 to 64 years, 65 to 74 years, and 75+ years. Race/ethnicity values include American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, Hispanic or Latino, and White. Sex values include female and male. Data set includes mortality data from 2016 to the most current year for Virginia residents.

    The 9 chronic conditions include: Alzheimer’s Disease, Cardiovascular disease, Chronic Kidney Disease, Chronic Obstructive Pulmonary Disease, Asthma, Diabetes, Stroke, Heart Disease, and Hypertension. The International Classification of Diseases, Tenth Revision (ICD-10) codes are used to identify chronic disease mortality indicators. Definitions are based on Underlying Cause of Death on the death certificate outlined in the “Underlying Cause-of-Death List for Tabulating Mortality Statistics” instruction manual developed by the National Center for Health Statistics at the Centers for Disease Control and Prevention (CDC) found here OCR Document (cdc.gov).

  8. A

    ‘COVID-19 State Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID-19 State Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-state-data-85fa/4a8c7dec/?iid=002-627&v=presentation
    Explore at:
    Dataset updated
    Mar 31, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

    --- Original source retains full ownership of the source dataset ---

  9. COVID-19 State Data

    • kaggle.com
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 3, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  10. N

    Dead Lake Township, Minnesota Population Pyramid Dataset: Age Groups, Male...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dead Lake Township, Minnesota Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6242e181-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Dead Lake Township
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Dead Lake Township, Minnesota population pyramid, which represents the Dead Lake township population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Dead Lake Township, Minnesota, is 22.3.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Dead Lake Township, Minnesota, is 55.7.
    • Total dependency ratio for Dead Lake Township, Minnesota is 78.0.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Dead Lake Township, Minnesota is 1.8.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Dead Lake township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Dead Lake township for the selected age group is shown in the following column.
    • Population (Female): The female population in the Dead Lake township for the selected age group is shown in the following column.
    • Total Population: The total population of the Dead Lake township for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dead Lake township Population by Age. You can refer the same here

  11. r

    National Longitudinal Survey of Older Men

    • rrid.site
    • dknet.org
    • +2more
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). National Longitudinal Survey of Older Men [Dataset]. http://identifiers.org/RRID:SCR_008947
    Explore at:
    Dataset updated
    Feb 9, 2024
    Description

    A dataset that permits examination of health, economic, work, and retirement trajectories for a representative national sample of men from middle to old age. The original sample of 5,020 men, first interviewed in 1966, was re-interviewed periodically until 1983 under a contract with the US Department of Labor. The study provided a detailed longitudinal record of their labor market activity, health, financial status, family structure, and attitudes toward and experience in retirement. The NIA grant made possible a re-interview in 1990 with the surviving men and the widows (or other next-of-kin) of the decedents. The merging of the 1990 data includes death certificate information for the decedents, Blacks were over-represented in the original sample in a ratio of about three or four to one, resulting in about 500 surviving black men in the sample. Information on labor market activity, income, and assets also is available for a sample of about 1,350 widows, 90 percent of whom are between 60 and 89 years of age. This information can be linked to earlier data on the women''s health and work activity that was reported by their late husbands. Due to the original sample selection, other NLS cohorts contain wives and daughters of the older men. These other surveys also hold a wealth of detailed information on aging and retirement issues, especially on income transfers. * Dates of Study: 1966-1990 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** 1966: 5,020 men (baseline) ** 1990: 2,092 surviving men, 1,341 widows, 865 other next-of-kin Links: * BLS Website on NLS: http://www.bls.gov/nls/ * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/04675

  12. f

    Data_Sheet_1_The Black Panther, Masculinity Barriers to Medical Care, and...

    • frontiersin.figshare.com
    • figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ellen Brooks; Jessica Y. Islam; David G. Perdue; Ethan Petersen; Marlene Camacho-Rivera; Carson Kennedy; Charles R. Rogers (2023). Data_Sheet_1_The Black Panther, Masculinity Barriers to Medical Care, and Colorectal Cancer Screening Intention Among Unscreened American Indian/Alaska Native, Black, and White Men.pdf [Dataset]. http://doi.org/10.3389/fpubh.2022.814596.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Ellen Brooks; Jessica Y. Islam; David G. Perdue; Ethan Petersen; Marlene Camacho-Rivera; Carson Kennedy; Charles R. Rogers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska, United States
    Description

    ObjectiveTo determine if masculinity barriers to medical care and the death from colorectal cancer (CRC) of actor Chadwick Boseman (The Black Panther) influenced CRC early-detection screening intent among unscreened American Indian/Alaska Native (AIAN) and Non-Hispanic-Black (Black) men compared with Non-Hispanic-White (White) men.MethodsUsing a consumer-panel, we surveyed U.S. men aged 18–75 years (N = 895) using the 24-item Masculinity Barriers to Medical Care (MBMC) scale. We calculated the median score to create binary exposures to evaluate associations with CRC screening intent and conducted multivariable logistic regression to evaluate independent associations stratified by race/ethnicity.ResultsOverall, Black respondents were most likely to have a high MBMC score (55%) compared to White (44%) and AIAN (51%) men (p = 0.043). AIAN men were least likely to report CRC screening intent (51.1%) compared with Black (68%) and White men (64%) (p < 0.001). Black men who reported the recent death of Chadwick Boseman increased their awareness of CRC were more likely (78%) to report intention to screen for CRC compared to those who did not (56%) (p < 0.001). Black men who exhibited more masculinity-related barriers to care were more likely to intend to screen for CRC (OR: 1.76, 95% CI: 0.98–3.16) than their counterparts, as were Black men who reported no impact of Boseman's death on their CRC awareness (aOR: 2.96, 95% CI: 1.13–7.67). Conversely, among AIAN men, those who exhibited more masculinity-related barriers to care were less likely to have CRC screening intent (aOR: 0.47, 95% CI: 0.27–0.82) compared with their counterparts.ConclusionsMasculinity barriers to medical care play a significant role in intention to screen for CRC. While Black men were most likely to state that The Black Panther's death increased their awareness of CRC, it did not appear to modify the role of masculine barriers in CRC screening intention as expected. Further research is warranted to better understand how masculine barriers combined with celebrity-driven health-promotion interventions influence the uptake of early-detection screening for CRC.ImpactOur study provides formative data to develop behavioral interventions focused on improving CRC screening completion among diverse men.

  13. f

    Contribution of eleven selected causes of death to Native American-White...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olusola A. Omisakin; Hyojun Park; Max T. Roberts; Eric N. Reither (2023). Contribution of eleven selected causes of death to Native American-White life expectancy gaps in the Four Corners States. [Dataset]. http://doi.org/10.1371/journal.pone.0256307.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Olusola A. Omisakin; Hyojun Park; Max T. Roberts; Eric N. Reither
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Contribution of eleven selected causes of death to Native American-White life expectancy gaps in the Four Corners States.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets [Dataset]. http://identifiers.org/RRID:SCR_008921

Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets

RRID:SCR_008921, nlx_151822, Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets (RRID:SCR_008921), Early Indicators of Later Work Levels Disease and Death, EI project, Public Health and Ecological Datasets, Aging of Veterans of the Union Army, Early Indicators of Later Work Levels Disease and Death ������?? Union Army Samples

Explore at:
Dataset updated
Jun 17, 2025
Description

A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836

Search
Clear search
Close search
Google apps
Main menu