36 datasets found
  1. c

    Census of Population and Housing, 1950: Public Use Microdata Sample

    • archive.ciser.cornell.edu
    Updated Feb 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1950: Public Use Microdata Sample [Dataset]. http://doi.org/10.6077/j5/0mbave
    Explore at:
    Dataset updated
    Feb 20, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Household, Individual
    Description

    This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08251.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  2. d

    3-digit occupation code images from the Norwegian census of 1950 - Manual...

    • dataone.org
    • dataverse.no
    • +1more
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Norwegian Historical Data Centre (2024). 3-digit occupation code images from the Norwegian census of 1950 - Manual review dataset [Dataset]. http://doi.org/10.18710/LYXKN1
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    DataverseNO
    Authors
    The Norwegian Historical Data Centre
    Time period covered
    Dec 1, 1950
    Description

    This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).

  3. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  4. d

    Selected items from the Census of Agriculture at the county level for the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012 [Dataset]. https://catalog.data.gov/dataset/selected-items-from-the-census-of-agriculture-at-the-county-level-for-the-conterminou-1950
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Contiguous United States, United States
    Description

    This metadata report documents tabular data sets consisting of items from the Census of Agriculture. These data are a subset of items from county-level data (including state totals) for the conterminous United States covering the census reporting years (every five years, with adjustments for 1978 and 1982) beginning with the 1950 Census of Agriculture and ending with the 2012 Census of Agriculture. Historical (1950-1997) data were extracted from digital files obtained through the Intra-university Consortium on Political and Social Research (ICPSR). More current (1997-2012) data were extracted from the National Agriculture Statistical Service (NASS) Census Query Tool for the census years of 1997, 2002, 2007, and 2012. Most census reports contain item values from the prior census for comparison. At times these values are updated or reweighted by the reporting agency; the Census Bureau prior to 1997 or NASS from 1997 on. Where available, the updated or reweighted data were used; otherwise, the original reported values were used. Changes in census item definitions and reporting as well as changes to county areas and names over the time span required a degree of manipulation on the data and county codes to make the data as comparable as possible over time. Not all of the census items are present for the entire 1950-2012 time span as certain items have been added since 1950 and when possible the items were derived from other items by subtracting or combining sub items. Specific changes and calculations are documented in the processing steps sections of this report. Other missing data occurs at the state and (or) county level due to census non-disclosure rules where small numbers of farms reporting an item have acres and (or) production values withheld to prevent identification of individual farms. In general, caution should be exercised when comparing current (2012) data with values reported in earlier censuses. While the 1974-2012 data are comparable, data prior to 1974 will have inflated farm counts and slightly inflated production amounts due to the differences in collection methods, primarily, the definition of a farm. Further discussion on comparability can be found the comparability section of the Supplemental Information element of this metadata report. Excluded from the tabular data are the District of Columbia, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the three county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. Data for independent cities of Virginia prior to 1959 have been included with their surrounding or adjacent county. Please refer to the Supplemental Information element for information on terminology, the Census of Agriculture, the Inter-university Consortium for Political and Social Research (ICPSR), table and variable structure, data comparability, all farms and economic class 1-5 farms, item calculations, increase of farms from 1974 to 1978, missing data and exclusion explanations, 1978 crop irregularities, pastureland irregularities, county alignment, definitions, and references. In addition to the metadata is an excel workbook (VariableKey.xlsx) with spreadsheets containing key spreadsheets for items and variables by category and a spreadsheet noting the presence or absence of entire variable data by year. Note: this dataset was updated on 2016-02-10 to populate omitted irrigation values for Miami-Dade County, Florida in 1997.

  5. OCCODE files

    • figshare.com
    txt
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bjørn-Richard Pedersen (2021). OCCODE files [Dataset]. http://doi.org/10.6084/m9.figshare.14573325.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 12, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Bjørn-Richard Pedersen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are the files, results, model and source code for the OCCODE project. They include:The results from running the occupational column from the full county 1950 Norwegian census through the OCCODE pipeline.An overview of the coding system used by Statistics Norway to encode the occupations of the 1950 Norwegian full count census.This overview was created by Statistics Norway, and the original can be found here: https://www.ssb.no/a/folketellinger/The model trained on the Random sample dataset.Previous results from running the occupational column from the full county 1950 Norwegian census through the OCCODE pipeline.Note that these results are worse than the current ones, found in RandomSample_total_confidence_scores.csvThe source code for the OCCODE pipeline as of 2021.05.11

  6. International Census Data

    • console.cloud.google.com
    Updated Nov 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&inv=1&invt=Ab1B8Q (2019). International Census Data [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/international-census-data
    Explore at:
    Dataset updated
    Nov 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    Description

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  7. d

    Tabular data for selected items from the Census of Agriculture for the...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Tabular data for selected items from the Census of Agriculture for the period 1950-2017 for counties in the conterminous United States [Dataset]. https://catalog.data.gov/dataset/tabular-data-for-selected-items-from-the-census-of-agriculture-for-the-period-1950-2017-fo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    This product provides tabular data from the U.S. Department of Agriculture (USDA) Census of Agriculture for selected items for the period 1950-2017 for counties in the conterminous United States. Data from 1950-2012 are taken from LaMotte (2015) and 2017 data are retrieved from the USDA QuickStats online tool. Data which are withheld in the Census of Agriculture are filled with estimates. The data include crop production values for 12 commodities (for example, corn in bushels), land use values for 7 land use types (for example, acres of total cropland), and 9 values for livestock types (for example, number of hogs and pigs). The data are largely intended as a 2017 update to the LaMotte dataset for items of research interest. LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016.

  8. H

    Spatial and temporal contrasts in the distribution of crops and pastures...

    • dataverse.harvard.edu
    Updated Jan 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2021). Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950: Crops and pastures across Amazonia [Dataset]. http://doi.org/10.7910/DVN/7J9WVY
    Explore at:
    tsv(2535), jpeg(16051572), application/zipped-shapefile(8449193)Available download formats
    Dataset updated
    Jan 18, 2021
    Dataset provided by
    Harvard Dataverse
    Area covered
    Brazil, Ecuador, Plurinational State of, Bolivia, Bolivarian Republic of, Venezuela, South America, Peru, Guyana, Colombia
    Description

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage

  9. n

    International Data Base

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). International Data Base [Dataset]. http://identifiers.org/RRID:SCR_013139
    Explore at:
    Dataset updated
    Feb 1, 2001
    Description

    A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490

  10. N

    Henry County, IL Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Henry County, IL Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66c1859f-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, Henry County
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Henry County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Henry County. The dataset can be utilized to understand the population distribution of Henry County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Henry County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Henry County.

    Key observations

    Largest age group (population): Male # 55-59 years (1,821) | Female # 60-64 years (1,950). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Henry County population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Henry County is shown in the following column.
    • Population (Female): The female population in the Henry County is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Henry County for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Henry County Population by Gender. You can refer the same here

  11. a

    Data from: Spatial and temporal contrasts in the distribution of crops and...

    • servir-data.alliancebioversityciat.org
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950 [Dataset]. https://servir-data.alliancebioversityciat.org/geonetwork/srv/search
    Explore at:
    Dataset updated
    Jan 12, 2024
    Description

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage.

  12. N

    New York City Population by Borough, 1950 - 2040

    • data.cityofnewyork.us
    • data.ny.gov
    • +3more
    application/rdfxml +5
    Updated Apr 29, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2014). New York City Population by Borough, 1950 - 2040 [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-by-Borough-1950-2040/xywu-7bv9
    Explore at:
    csv, application/rssxml, xml, json, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Apr 29, 2014
    Dataset authored and provided by
    Department of City Planning (DCP)
    Area covered
    New York
    Description

    Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.

  13. N

    Peoria, IL Age Group Population Dataset: A Complete Breakdown of Peoria Age...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Peoria, IL Age Group Population Dataset: A Complete Breakdown of Peoria Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/453e6587-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Peoria, Illinois
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Peoria population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Peoria. The dataset can be utilized to understand the population distribution of Peoria by age. For example, using this dataset, we can identify the largest age group in Peoria.

    Key observations

    The largest age group in Peoria, IL was for the group of age 25 to 29 years years with a population of 8,480 (7.56%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Peoria, IL was the 80 to 84 years years with a population of 1,950 (1.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Peoria is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Peoria total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Peoria Population by Age. You can refer the same here

  14. World Population Data

    • kaggle.com
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suraj Kumar (2020). World Population Data [Dataset]. https://www.kaggle.com/surajkumar88/world-population-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Suraj Kumar
    Area covered
    World
    Description

    World Population Data Set

    The population explosion has been a serious topic for years and this data set helps us to analyze that on a granular level.

    This dataset contains data about the population count and census data for each country in the world. The data set spans from 1950 to 2013. This data set is acquired from "data.world" website and all the credits go to them

  15. N

    Age-wise distribution of Bainbridge Island, WA household incomes:...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Bainbridge Island, WA household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/85421a54-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bainbridge Island, Washington
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Bainbridge Island: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 75(0.76%) households where the householder is under 25 years old, 1,950(19.85%) households with a householder aged between 25 and 44 years, 4,067(41.40%) households with a householder aged between 45 and 64 years, and 3,732(37.99%) households where the householder is over 65 years old.
    • In Bainbridge Island, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Bainbridge Island median household income by age. You can refer the same here

  16. J

    Data from: A county-level database on expellees in West Germany, 1939–1961

    • journaldata.zbw.eu
    pdf, stata do, xlsx
    Updated Jun 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Till Braun; Richard Franke; Sebastian Till Braun; Richard Franke (2021). A county-level database on expellees in West Germany, 1939–1961 [Dataset]. http://doi.org/10.15456/vswg.2021067.075645
    Explore at:
    xlsx, pdf, stata do, xlsx(251403)Available download formats
    Dataset updated
    Jun 8, 2021
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Sebastian Till Braun; Richard Franke; Sebastian Till Braun; Richard Franke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West Germany
    Description

    Between 1944–1950, almost eight million expellees arrived in West Germany. We introduce a rich county-level database on the expellees’ socio-economic situation in post-war Germany. The database contains regionally disaggregated information on the number, origin, age, gender, religious denomination and labour force status of expellees. It also records corresponding information on the West German population as a whole, on the pre-war economic and religious structure of host and origin regions, and on war destructions in West Germany. The main data sources are the West German censuses of 1939, 1946, 1950 and 1961. Altogether, the database consists of 18 data tables (in xsls format). We have digitized the data as printed in the statistical sources, adding only an English translation of the table head (along with the original table head in German). Each data table has two tabs: The first tab (named “source”) lists the reference(s) of the printed source, the second (“data”) contains the actual data. Please consult the readme file for an overview of each data table’s content and the paper for additional information.

  17. w

    County Boundaries for Selected Items from the Census of Agriculture,...

    • data.wu.ac.at
    • data.usgs.gov
    • +3more
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). County Boundaries for Selected Items from the Census of Agriculture, 1950-2012 (COA_STCOFIPS) [Dataset]. https://data.wu.ac.at/schema/data_gov/NTQ4OTJjNTAtMzJhNy00YzlmLTk1MWQtZWUyMjg1NDBmMWM2
    Explore at:
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    2c4789fb0fa702e6f261891320efefc78e75e696
    Description

    This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left in place to preserve the areas of the surrounding counties. Baltimore City, Maryland was combined with Baltimore County and the St. Louis City, Missouri, was combined with St. Louis County. La Paz County, Arizona was combined with Yuma County, Arizona and Cibola County, New Mexico was combined with Valencia County, New Mexico. Minor county border changes were at a level of precision beyond the scope of the data collection. A major objective of the census data tabulation is to maintain a reasonable degree of comparability of agricultural data from census to census. The tabular data collection is from 14 different censuses where definitions and data collection techniques may change over time and while the data are mostly comparable, a degree of caution should be exercised when using the data in analysis procedures. While the data are at a county-level resolution, a regional approach is more appropriate than a county-by-county analysis. The main purpose of this layer is to provide a base to generate a county raster for the allocation of agricultural census values to specific (agricultural) pixels. Vector format is provided so the raster pixel size can be user designated. References cited: LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016. National Historical Geographic Information System, Minnesota Population Center, 2004, Historic counties for the 2000 census of population and housing: Minneapolis, MN, University of Minnesota, accessed 03/18/2013 at http://nhgis.org

  18. a

    County

    • hub.arcgis.com
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2025). County [Dataset]. https://hub.arcgis.com/datasets/nationalclimate::livneh-historical-observations-hot-days?layer=1
    Explore at:
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has historical variables in decadal increments from 1950 to 2020 derived from historical observations of air temperature and precipitation. The variables included are:Annual number of days with a maximum temperature greater than or equal to 85°F Annual number of days with a maximum temperature greater than or equal to 86°F Annual number of days with a maximum temperature greater than or equal to 90°F Annual number of days with a maximum temperature greater than or equal to 95°F Annual number of days with a maximum temperature greater than or equal to 100°F Annual number of days with a maximum temperature greater than or equal to 105°F Annual number of days with a maximum temperature greater than or equal to 110°F Annual number of days with a maximum temperature greater than or equal to 115°F This layer uses data from the Livneh gridded precipitation and other meteorological variables for continental US, Mexico and southern Canada. Further processing by Esri is explained below.For each variable, there are mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available from the CRIS Website’s About the Data. Other climate variables are available from the CRIS Data page. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides historic values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesHistoric climate threshold values (e.g. Days Over 90°F) were calculated for each year from 1950 to 2020. To ensure the layer displays time correctly, under 'Map properties' set Time zone to 'Universal Coordinated Time (UTC)' and under 'Time slider options' set Time intervals to '1 Decade'.Data CitationLivneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950 - 2013. Scientific Data, 2, https://doi.org/10.1038/sdata.2015.42.Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.

  19. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Evanston, IL Household Incomes Across 16 Income Brackets // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ac67c898-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Evanston, Illinois
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Evanston: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 1,950(6.31%) households where the householder is under 25 years old, 9,314(30.14%) households with a householder aged between 25 and 44 years, 11,261(36.44%) households with a householder aged between 45 and 64 years, and 8,375(27.10%) households where the householder is over 65 years old.
    • In Evanston, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Evanston median household income by age. You can refer the same here

  20. N

    Hagerstown, MD Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Hagerstown, MD Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66b604c0-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hagerstown, Maryland
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Hagerstown by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Hagerstown. The dataset can be utilized to understand the population distribution of Hagerstown by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Hagerstown. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Hagerstown.

    Key observations

    Largest age group (population): Male # 5-9 years (1,876) | Female # 25-29 years (1,950). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Hagerstown population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Hagerstown is shown in the following column.
    • Population (Female): The female population in the Hagerstown is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Hagerstown for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hagerstown Population by Gender. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bureau of the Census (2020). Census of Population and Housing, 1950: Public Use Microdata Sample [Dataset]. http://doi.org/10.6077/j5/0mbave

Census of Population and Housing, 1950: Public Use Microdata Sample

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 20, 2020
Dataset authored and provided by
Bureau of the Census
Variables measured
Household, Individual
Description

This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation. (Source: downloaded from ICPSR 7/13/10)

Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08251.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

Search
Clear search
Close search
Google apps
Main menu