Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The U.S. federal funds effective rate underwent a dramatic reduction in early 2020 in response to the COVID-19 pandemic. The rate plummeted from 1.58 percent in February 2020 to 0.65 percent in March, and further decreased to 0.05 percent in April. This sharp reduction, accompanied by the Federal Reserve's quantitative easing program, was implemented to stabilize the economy during the global health crisis. After maintaining historically low rates for nearly two years, the Federal Reserve began a series of rate hikes in early 2022, with the rate moving from 0.33 percent in April 2022 to 5.33 percent in August 2023. The rate remained unchanged for over a year, before the Federal Reserve initiated its first rate cut in nearly three years in September 2024, bringing the rate to 5.13 percent. By December 2024, the rate was cut to 4.48 percent, signaling a shift in monetary policy in the second half of 2024. In January 2025, the Federal Reserve implemented another cut, setting the rate at 4.33 percent, which remained unchanged throughout the following months. What is the federal funds effective rate? The U.S. federal funds effective rate determines the interest rate paid by depository institutions, such as banks and credit unions, that lend reserve balances to other depository institutions overnight. Changing the effective rate in times of crisis is a common way to stimulate the economy, as it has a significant impact on the whole economy, such as economic growth, employment, and inflation. Central bank policy rates The adjustment of interest rates in response to the COVID-19 pandemic was a coordinated global effort. In early 2020, central banks worldwide implemented aggressive monetary easing policies to combat the economic crisis. The U.S. Federal Reserve's dramatic reduction of its federal funds rate - from 1.58 percent in February 2020 to 0.05 percent by April - mirrored similar actions taken by central banks globally. While these low rates remained in place throughout 2021, mounting inflationary pressures led to a synchronized tightening cycle beginning in 2022, with central banks pushing rates to multi-year highs. By mid-2024, as inflation moderated across major economies, central banks began implementing their first rate cuts in several years, with the U.S. Federal Reserve, Bank of England, and European Central Bank all easing monetary policy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effective Federal Funds Rate in the United States remained unchanged at 4.33 percent on Wednesday July 2. This dataset includes a chart with historical data for the United States Effective Federal Funds Rate.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
View data of the Effective Federal Funds Rate, or the interest rate depository institutions charge each other for overnight loans of funds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for FOMC Summary of Economic Projections for the Fed Funds Rate, Median (FEDTARMD) from 2025 to 2027 about projection, federal, median, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate In the Euro Area was last recorded at 2.15 percent. This dataset provides - Euro Area Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Personal Saving Rate (PSAVERT) from Jan 1959 to May 2025 about savings, personal, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Indonesia was last recorded at 5.50 percent. This dataset provides - Indonesia Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Interest Rates, Discount Rate for United States (INTDSRUSM193N) from Jan 1950 to Aug 2021 about discount, interest rate, interest, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset is part of the following publication at the TransAI 2023 conference: R. Wallsberger, R. Knauer, S. Matzka; "Explainable Artificial Intelligence in Mechanical Engineering: A Synthetic Dataset for Comprehensive Failure Mode Analysis" DOI: http://dx.doi.org/10.1109/TransAI60598.2023.00032
This is the original XAI Drilling dataset optimized for XAI purposes and it can be used to evaluate explanations of such algortihms. The dataset comprises 20,000 data points, i.e., drilling operations, stored as rows, 10 features, one binary main failure label, and 4 binary subgroup failure modes, stored in columns. The main failure rate is about 5.0 % for the whole dataset. The features that constitute this dataset are as follows:
Process time t (s): This feature captures the full duration of each drilling operation, providing insights into efficiency and potential bottlenecks.
Main failure: This binary feature indicates if any significant failure on the drill bit occurred during the drilling process. A value of 1 flags a drilling process that encountered issues, which in this case is true when any of the subgroup failure modes are 1, while 0 indicates a successful drilling operation without any major failures.
Subgroup failures: - Build-up edge failure (215x): Represented as a binary feature, a build-up edge failure indicates the occurrence of material accumulation on the cutting edge of the drill bit due to a combination of low cutting speeds and insufficient cooling. A value of 1 signifies the presence of this failure mode, while 0 denotes its absence. - Compression chips failure (344x): This binary feature captures the formation of compressed chips during drilling, resulting from the factors high feed rate, inadequate cooling and using an incompatible drill bit. A value of 1 indicates the occurrence of at least two of the three factors above, while 0 suggests a smooth drilling operation without compression chips. - Flank wear failure (278x): A binary feature representing the wear of the drill bit's flank due to a combination of high feed rates and low cutting speeds. A value of 1 indicates significant flank wear, affecting the drilling operation's accuracy and efficiency, while 0 denotes a wear-free operation. - Wrong drill bit failure (300x): As a binary feature, it indicates the use of an inappropriate drill bit for the material being drilled. A value of 1 signifies a mismatch, leading to potential drilling issues, while 0 indicates the correct drill bit usage.
By Noah Rippner [source]
This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.
Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.
The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.
To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.
Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.
It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.
Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.
Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes
Familiarize Yourself with the Columns:
- County: The name of the county.
- FIPS: The Federal Information Processing Standards code for the county.
- Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
- Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
- Average Deaths per Year: The average number of deaths per year due to cancer in the county.
- Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
- Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
- Average Annual Count: The average annual count of cancer deaths/incidence in the county.
Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.
Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.
Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.
Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.
Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Canada was last recorded at 2.75 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monetary policy, the yield curve and the private sector behaviour of the US economy are modelled as a time-varying structural vector autoregression. The monetary policy shocks of the early 1980s explain a large portion of the persistence of inflation and the level of the term structure. Changes in inflation expectations implied by the yield curve account for the persistence of the federal funds rate. Failures of the expectations hypothesis are rare, and coincided with the credibility building of Paul Volcker's Fed tenure at the beginning of the 1980s and the sequence of consecutive policy rate cuts around the time of the early 1990s recession.
The Politbarometer has been conducted since 1977 on an almost monthly basis by the Research Group for Elections (Forschungsgruppe Wahlen) for the Second German Television (ZDF). Since 1990, this database has also been available for the new German states. The survey focuses on the opinions and attitudes of the voting population in the Federal Republic on current political topics, parties, politicians, and voting behavior. From 1990 to 1995 and from 1999 onward, the Politbarometer surveys were conducted separately in the eastern and western federal states (Politbarometer East and Politbarometer West). The separate monthly surveys of a year are integrated into a cumulative data set that includes all surveys of a year and all variables of the respective year. The Politbarometer short surveys, collected with varying frequency throughout the year, are integrated into the annual cumulation starting from 2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effect of microplastic ingestion on heterotrophic dinoflagellate growth rates
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Thailand was last recorded at 1.75 percent. This dataset provides - Thailand Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.