Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
This dataset is comprised of data submitted to HCAI by prescription drug manufacturers for wholesale acquisition cost (WAC) increases that exceed the statutorily-mandated WAC increase threshold of an increase of more than 16% above the WAC of the drug product on December 31 of the calendar year three years prior to the current calendar year. This threshold applies to prescription drug products with a WAC greater than $40 for a course of therapy. Required WAC increase reports are to be submitted to HCAI within a month after the end of the quarter in which the WAC increase went into effect. Please see the statute and regulations for additional information regarding reporting thresholds and report due dates.
Key data elements in this dataset include the National Drug Code (NDC) maintained by the FDA, narrative descriptions of the reasons for the increase in WAC, and the five-year history of WAC increases for the NDC. A WAC Increase Report consists of 27 data elements that have been divided into two separate Excel data sets: Prescription Drug WAC Increase and Prescription Drug WAC Increase – 5 Year History. The datasets include manufacturer WAC Increase Reports received since January 1, 2019. The Prescription Drugs WAC Increase dataset consists of the information submitted by prescription drug manufacturers that pertains to the current WAC increase of a given report, including the amount of the current increase, the WAC after increase, and the effective date of the increase. The Prescription Drugs WAC Increase – 5 Year History dataset consists of the information submitted by prescription drug manufacturers for the data elements that comprise the 5-year history of WAC increases of a given report, including the amount of each increase and their effective dates.
There are 2 types of WAC Increase datasets below: Monthly and Annual. The Monthly datasets include the data in completed reports submitted by manufacturers for calendar year 2025, as of July 8, 2025. The Annual datasets include data in completed reports submitted by manufacturers for the specified year. The datasets may include reports that do not meet the specified minimum thresholds for reporting.
The Quick Guide explaining how to link the information in each data set to form complete reports is here: https://hcai.ca.gov/wp-content/uploads/2024/03/QuickGuide_LinkingTheDatasets.pdf
The program regulations are available here: https://hcai.ca.gov/wp-content/uploads/2024/03/CTRx-Regulations-Text.pdf
The data format and file specifications are available here: https://hcai.ca.gov/wp-content/uploads/2024/03/Format-and-File-Specifications-version-2.0-ada.pdf
DATA NOTES: Due to recent changes in Excel, it is not recommended that you save these files to .csv format. If you do, when importing back into Excel the leading zeros in the NDC number column will be dropped. If you need to save it into a different format other than .xlsx it must be .txt
DATA UPDATES: Annual datasets of reports from the preceding year are reviewed in the second half of the current year to identify if any revisions or additions have been made since the original release of the datasets. If revisions or additions have been found, an update of the datasets will be released. Datasets will be clearly marked with 'Updated' in their titles for convenient identification. Not all datasets may require an updated release. The review of previously released datasets will only be conducted once to determine if an updated release is necessary. Datasets with revisions or additions that may have been made after the one-time review can be requested. These requests should be sent via email to ctrx@hcai.ca.gov. Due to regulatory changes that went into effect April 1, 2024, reports submitted prior to April 1, 2024, will include the data field "Unit Sales Volume in US" and reports submitted on or after April 1, 2024, will instead include "Total Volume of Gross Sales in US Dollars".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Russia was last recorded at 20 percent. This dataset provides the latest reported value for - Russia Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The index relates to costs ruling on the first day of each month. NATIONAL HOUSE CONSTRUCTION COST INDEX; Up until October 2006 it was known as the National House Building Index Oct 2000 data; The index since October, 2000, includes the first phase of an agreement following a review of rates of pay and grading structures for the Construction Industry and the first phase increase under the PPF. April, May and June 2001; Figures revised in July 2001due to 2% PPF Revised Terms. March 2002; The drop in the March 2002 figure is due to a decrease in the rate of PRSI from 12% to 10¾% with effect from 1 March 2002. The index from April 2002 excludes the one-off lump sum payment equal to 1% of basic pay on 1 April 2002 under the PPF. April, May, June 2003; Figures revised in August'03 due to the backdated increase of 3% from 1April 2003 under the National Partnership Agreement 'Sustaining Progress'. The increases in April and October 2006 index are due to Social Partnership Agreement "Towards 2016". March 2011; The drop in the March 2011 figure is due to a 7.5% decrease in labour costs. Methodology in producing the Index Prior to October 2006: The index relates solely to labour and material costs which should normally not exceed 65% of the total price of a house. It does not include items such as overheads, profit, interest charges, land development etc. The House Building Cost Index monitors labour costs in the construction industry and the cost of building materials. It does not include items such as overheads, profit, interest charges or land development. The labour costs include insurance cover and the building material costs include V.A.T. Coverage: The type of construction covered is a typical 3 bed-roomed, 2 level local authority house and the index is applied on a national basis. Data Collection: The labour costs are based on agreed labour rates, allowances etc. The building material prices are collected at the beginning of each month from the same suppliers for the same representative basket. Calculation: Labour and material costs for the construction of a typical 3 bed-roomed house are weighted together to produce the index. Post October 2006: The name change from the House Building Cost Index to the House Construction Cost Index was introduced in October 2006 when the method of assessing the materials sub-index was changed from pricing a basket of materials (representative of a typical 2 storey 3 bedroomed local authority house) to the CSO Table 3 Wholesale Price Index. The new Index does maintains continuity with the old HBCI. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Oct 2008 data; Decrease due to a fall in the Oct Wholesale Price Index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains various attributes that can be used to predict cryptocurrency prices. The data includes a range of features related to market and technical indicators. Each row represents a specific time period with the following columns:
This dataset can be used for various predictive modeling tasks, including but not limited to: - Predicting future cryptocurrency prices based on historical data. - Analyzing the impact of different attributes on price changes. - Building machine learning models to forecast market trends.
Please provide proper attribution if you use this dataset in your work or research.
https://doi.org/10.5061/dryad.gmsbcc2wm
This dataset contains published estimates of hatching failure (due to infertility or embryo death) in bird eggs, with red list category , estimates of global population size, number of clutches from which the hatching failure rates are based upon, study year and latitude of the study site(s).
To find relevant data we used Google Scholar and ISI Web of Science. Search terms included “hatching failure”, “hatching success”, “hatchability”, “birds”, and “breeding ecology”. Other major data sources were Cramp et al. (1977-1994), Heber and Briskie (2010), Koenig (1982), Morrow et al. (2002), and Spottiswoode and Møller (2004). We also acquired data on hatching failure rates from nest records of birds from Norway stored at the University Museum of Bergen.
The dataset was used to analyze time trends in avian hatching failure rat...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Thailand was last recorded at 1.75 percent. This dataset provides - Thailand Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Point Reyes National Seashore in California. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI and the data contained within this dataset provide an objective technique for evaluation and long-term planning by scientists and park managers.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development, reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute < 1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.
Methods For each mammal species i with available life-history information, we searched SCOPUS for studies (published before 2018) where the title, abstract, or keywords contained the following search terms:
Scientific species namei AND (demograph* OR population OR life-history OR "life history" OR model) AND (climat* OR precipitation OR rain* OR temperature OR weather) AND (surv* OR reprod* OR recruit* OR brood OR breed* OR mass OR weight OR size OR grow* OR offspring OR litter OR lambda OR birth OR mortality OR body OR hatch* OR fledg* OR productiv* OR age OR inherit* OR sex OR nest* OR fecund* OR progression OR pregnan* OR newborn OR longevity).
We used the R package taxize (Chamberlain and Szöcs 2013) to resolve discrepancies in scientific names or taxonomic identifiers and, where applicable, searched SCOPUS using all scientific names associated with a species in the Integrated Taxonomic Information System (ITIS; http://www.itis.gov).
We did not extract information on demographic-rate-climate relationships if:
A study reported on single age or stage-specific demographic rates (e.g., Albon et al. 2002; Rézoiki et al. 2016)
A study used an experimental design to link demographic rates to climate variation (e.g., Cain et al. 2008)
A study considered the effects of climate only indirectly or qualitatively. In most cases, this occurred when demographic rates differed between seasons (e.g., dry vs. wet season) but were not linked explicitly to climatic factors (e.g., varying precipitation amount between seasons) driving these differences (e.g., de Silva et al. 2013; Gaillard et al. 2013).
We included several studies of the same population as different studies assessed different climatic variables or demographic rates or spanned different years (e.g., for Rangifer tarandus platyrhynchus, Albon et al. 2017; Douhard et al. 2016).
We note that we can miss a potentially relevant study if our search terms were not mentioned in the title, abstract, or keywords. To our knowledge, this occurred only once, for Mastomys natalensis (we included the relevant study [Leirs et al. 1997] into our review after we were made aware that it assesses climate-demography relationships in the main text).
Lastly, we checked for potential database bias by running the search terms for a subset of nine species in Web of Science. The subset included three species with > three climate-demography studies published and available in SCOPUS (Rangifer tarandus, Cervus elaphus, Myocastor coypus); three species with only one climate-demography study obtained from SCOPUS (Oryx gazella, Macropus rufus, Rhabdomys pumilio); and another three species where SCOPUS did not return any published study (Calcochloris obtusirostris, Cynomops greenhalli, Suncus remyi). Species in the three subcategories were randomly chosen. Web of Science did not return additional studies for the three species where SCOPUS also failed to return a potentially suitable study. For the remaining six species, the total number of studies returned by Web of Science differed, but the same studies used for this review were returned, and we could not find any additional studies that adhered to our extraction criteria.
Description of key collected data
From all studies quantitatively assessing climate-demography relationships, we extracted the following information:
Geographic location - The center of the study area was always used. If coordinates were not provided in a study, we assigned coordinates based on the study descriptions of field sites and data collection.
Terrestrial biome - The study population was assigned to one of 14 terrestrial biomes (Olson et al. 2001) corresponding to the center of the study area. As this review is focused on general climatic patterns affecting demographic rates, specific microhabitat conditions described for any study population were not considered.
Climatic driver - Drivers linked to demographic rates were grouped as either local/regional precipitation & temperature values or derived indices (e.g., ENSO, NAO). The temporal extent (e.g., monthly, seasonal, annual, etc.) and aggregation type (e.g., minimum, maximum, mean, etc.) of drivers was also noted.
Demographic rate modeled - To facilitate comparisons, we grouped the demographic rates into either survival, reproductive success (i.e., whether or not reproduction occurre, reproductive output (i.e., number or rate of offspring production), growth (including stage transitions), or condition that determines development (i.e., mass or size).
Stage or sex modeled - We retrieved information on responses of demographic rates to climate for each age class, stage, or sex modeled in a given study.
Driver effect - We grouped effects of drivers as positive (i.e., increased demographic rates), negative (i.e., reduced demographic rate), no effect, or context-dependent (e.g., positive effects at low population densities and now effect at high densities). We initially also considered nonlinear effects (e.g., positive effects at intermediate values and negative at extremes of a driver), but only 4 studies explicitly tested for nonlinear effects, by modelling squared or cubic climatic drivers in combination with driver interactions. We therefore considered nonlinear demographic effects as context dependent.
Driver interactions - We noted any density dependence modeled and any non-climatic covariates included (as additive or interactive effects) in the demographic-rate models assessing climatic effects.
Future projections of climatic driver - In studies that indicated projections of drivers under climate change, we noted whether drivers were projected to increase, decrease, or show context-dependent trends. For studies that provided no information on climatic projections, we quantified projections as described in Detailed description of climate-change projections below (see also climate_change_analyses_mammal_review.R).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate In the Euro Area was last recorded at 2.15 percent. This dataset provides - Euro Area Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within War in the Pacific National Historical Park in Guam. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 500-meter grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI and the data contained within this dataset provide an objective technique for evaluation and long-term planning by scientists and park managers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in India was last recorded at 5.50 percent. This dataset provides - India Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Pakistan was last recorded at 11 percent. This dataset provides - Pakistan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in South Africa was last recorded at 7.25 percent. This dataset provides - South Africa Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Indonesia was last recorded at 5.50 percent. This dataset provides - Indonesia Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Nigeria was last recorded at 27.50 percent. This dataset provides - Nigeria Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.