World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.
This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
© MarineCadastre.gov This layer is a component of BOEMRE Layers.
This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.
For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov
The REST services for National Level Data can be found here:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer
REST services for regional level data can be found by clicking on the region of interest from the following URL:
http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE
Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL:
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx
Currently the following layers are available from this REST location:
OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.
OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.
OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.
Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.
BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.
BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.
Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.
Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip
BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest.
http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.
BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.The Boundary layer consists of lines representing the boundaries of Parcels and Legal Descriptions. (See the metadata for those two layers.) Boundary lines are the places that are surveyed in order to delimit the extent of Parcels and Legal Descriptions. The character and accuracy of Boundary locations is held in the attributes of the Points that are at the ends of Boundary lines. All the boundaries of Parcels and Legal Descriptions are covered by a Boundary line. Currently the Boundary layer has little functionality. The only distinction it makes is between upland boundaries and shorelines. In the future Boundary lines will have a richer set of attributes in order to accommodate cartographic needs to distinguish between types of boundaries.WA Boundaries Metadata
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application. The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale. In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info. The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics). For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info. Dataset History Details on the source data can be found in the xml file associated with data layer. Data in this release *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology *Georeferenced Queensland geology map, gravity and magnetic images *Queensland geology map, structural framework and schematic diagram PDF files *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94 Accessing the data Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites"). Metadata Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders. Disclaimer The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites. Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination. The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason. The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way. WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties. Please view the 'readme.html' and 'licence.html' file for further, more complete information Dataset Citation Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.
This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
This dataset contains documentation on the 146 global regions used to organize responses to the ArchaeGLOBE land use questionnaire between May 18 and July 31, 2018. The regions were formed from modern administrative regions (Natural Earth 1:50m Admin1 - states and provinces, https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/). The boundaries of the polygons represent rough geographic areas that serve as analytical units useful in two respects - for the history of land use over the past 10,000 years (a moving target) and for the history of archaeological research. Some consideration was also given to creating regions that were relatively equal in size. The regionalization process went through several rounds of feedback and redrawing before arriving at the 146 regions used in the survey. No bounded regional system could ever truly reflect the complex spatial distribution of archaeological knowledge on past human land use, but operating at a regional scale was necessary to facilitate timely collaboration while achieving global coverage. Map in Google Earth Format: ArchaeGLOBE_Regions_kml.kmz Map in ArcGIS Shapefile Format: ArchaeGLOBE_Regions.zip (multiple files in zip file) The shapefile format is a digital vector file that stores geographic location and associated attribute information. It is actually a collection of several different file types: .shp — shape format: the feature geometry .shx — shape index format: a positional index of the feature geometry .dbf — attribute format: columnar attributes for each shape .prj — projection format: the coordinate system and projection information .sbn and .sbx — a spatial index of the features .shp.xml — geospatial metadata in XML format .cpg — specifies the code page for identifying character encoding Attributes: FID - a unique identifier for every object in a shapefile table (0-145) Shape - the type of object (polygon) World_ID - coded value assigned to each feature according to its division into one of seventeen ‘World Regions’ based on the geographic regions used by the Statistics Division of the United Nations (https://unstats.un.org/unsd/methodology/m49/), with small changes to better reflect archaeological scholarly communities. These large regions provide organizational structure, but are not analytical units for the study. World_RG - text description of each ‘World Region’ Archaeo_ID - unique identifier (1-146) corresponding to the region code used in the ArchaeoGLOBE land use questionnaire and all ArchaeoGLOBE datasets Archaeo_RG - text description of each region Total_Area - the total area, in square kilometers, of each region Land-Area - the total area minus the area of all lakes and reservoirs found within each region (source: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-lakes/) PDF of Region Attribute Table: ArchaeoGLOBE Regions Attributes.pdf Excel file of Region Attribute Table: ArchaeoGLOBE Regions Attributes.xls Printed Maps in PDF Format: ArchaeoGLOBE Regions.pdf Documentation of the ArchaeoGLOBE Regional Map: ArchaeoGLOBE Regions README.doc
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.
Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery
Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.Every summer for approximately the past seventy years, an insect and disease aerial detection survey has been flown of all the forested acres of Washington state (except where noted in the digital data by large 'NF' (not flown) areas). This survey is a cooperative effort between the U.S. Forest Service and the WADNR with two different flight observers each sketching a two mile swath out their side of the plane. The primary mission of the survey is to record recently killed and defoliated groups of trees throughout the state, and to continually build a historical record of these trends. The vast majority of damage found is caused by insect and disease damage agents; however, trees killed by early spring feeding of black bears or by events such as winter storms, fires, floods and landslides are recorded as well. Current defoliation can be detected as soon as the affected foliage changes color that year. However, whole tree mortality is not current since only flagged trees (i.e., trees which have a bright red, orange, or yellow foliage color) are recorded. This means that trees killed the year of the survey will not have changed color yet and so a one year lag time results. Since only this distinctive color or "signature" of the tree can be seen. It is an educated guess as to the causal agent. We therefore use ground surveys to reinforce our estimates as much as possible. Example: When bear damage is spotted while surveying, a polygon is drawn on the map of the size and location of the damage. The polygon is then labeled with the appropriate damage agent (i.e. Bear) and the number of trees affected rounded to the nearest five. No vertical data is recorded.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Government Office (GO) Regions in Shape format derived from OS Boundary-Line data. The Regions were created from Digimap datasets downloaded from Boundary Download of 'County' Boundaries and the 'District Borough Unitary Authority' boundaries'. These were loaded into ArcMap as Shape files and using the map at http://www.gos.gov.uk/common/docs/239408/442543 (which is accessed from http://www.gos.gov.uk/aboutusnat/) as the guide the Regions were identified and merged together from individual Counties, Unitary Authorites and Metropoliatain Districts. The Revision Date of the OS Boundary-Line data is April 2008. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-07-20 and migrated to Edinburgh DataShare on 2017-02-21.
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis. The data set is intended for free public access. The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code) You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis. The data set is intended for free public access. The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code) You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis. The data set is intended for free public access. The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code) You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple the Queensland geology and structural framework dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This dataset contains a polygon shapefile of the Belyando Basin province boundary. The Belyando Basin underlies the eastern margin of the Galilee subregion. Extracted from the QLD Geology and Structural Framework of 2012 - the abstract of which is below.
The data on this DVD contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.
The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.
The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).
For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.
This dataset provides a single, merged representation of the Belyando Basin as interpreted by the QLD Geology and Structural Framework of 2012
This dataset has been extracted directly from the QLD Geology and Structural Framework: QLD_STRUCTURAL_FRAMEWORK.shp.
a) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
b) Eromanga Basin>Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
c) Drummond Basin>Belyando Basin>Thomson Orogen
d) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen
The lineage of the QLD Geology and Structural Framework is below:
Data in this release
*ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology
*ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework
*ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology
*Georeferenced Queensland geology map, gravity and magnetic images
*Queensland geology map, structural framework and schematic diagram PDF files
*Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94
Accessing the data
Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").
Metadata
Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.
Disclaimer
The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.
Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.
The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.
The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.
WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.
Bioregional Assessment Programme (XXXX) Belyando Basin Boundary - QLD Structural Framework. Bioregional Assessment Derived Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/4add856a-eb40-4bb2-bd41-f89788884782.
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.DNR Water Bodies (WB) and DNR Watercourses (WC) collectively known as DNR Hydro, contain water feature location and water type that is used by the Forest Practices program to determine the amount and pattern of riparian buffer protection required during forest practices activities. The water type is a Washington State Department of Natural Resources (DNR) classification system of streams and water bodies that identifies whether or not streams/water bodies have potential fish habitat, and whether or not streams experience perennial or seasonal flow.
WC Hydro represents water courses as arcs or lines. These occur alone as single arcs representing streams, ditches, or pipelines, or as centerlines through water body polygons such as double-banked streams, lakes, impoundments, reservoirs, wet areas, or glaciers. WB represents water bodies as polygonal features. WB Hydro includes features such as Puget Sound, lakes, wet areas, reservoirs, impoundments, glaciers, islands, and dams. WS represents shorelines as polygon perimeter arcs and are edited coincidentally with WB. WC and WB are edited daily and simultaneously; updates are posted weekly for internal DNR use and monthly for external use. Routes can be built on the WC by using the whole stream identifier (WC_LLID_NR). DNR HYDRO is continually updated through the DNR Forest Practices Water Type Modification Form process. DNR HYDRO is mixed scale. The nominal scale is considered 1:24,000, but some data at larger scales are included.Water Bodies Layer Metadata
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There have been a number of requests for "State Roads" data. This data is currently available via the Data.NSW Spatial Collaboration Portal.
To access Road Segment Data please follow the instructions below;
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%201.png?itok=Zj8I2HTQ&c=57759871b0db5f3b792ed8c6dc3c4669" alt="homepage">
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%202.png?itok=uy1Gkd3E&c=2f9dc44fee9f3e79d7b5348119a8827f" alt="Export Page">
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%203.png?itok=DMQQSR4S" alt="Layers to Export Page">
Click Next >
Do you want to specify an extent? Select No or Yes, by drawing the extent on a map. If you select ‘No’ all the data will be extracted. If you wanted to specify an extent of data extraction, e.g. around Sydney in the screenshot below, use the square icon labelled ‘Draw a rectangle’. This will draw a square centred on the point where you clicked on the map. You can change the shape from the icon labelled ‘Reshape’ to get the required area of extraction.
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%204.png?itok=T28ur_3b" alt="Map Selection View">
Click on Next >
Select your preferred Export format. Please note the limitation of ESRI Shape files truncating attribute names to 10 characters.
Select your preferred Export datum: Please note the current preference of GDA2020, although that depends on your objective.
Select your preferred Export coordinate system: ‘Geographic’ will export the geometries in latitude/longitude. MGAxx coordinate systems will export the geometries in metres.
Type your email address
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%205.png?itok=KQ2XbSQL" alt="Attribute Selection">
Click Export
You should see the screen below
https://opendata.transport.nsw.gov.au/sites/default/files/styles/panopoly_image_original/public/Image%206.PNG?itok=4isSITci" alt="Confirmation Screen">
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis. The data set is intended for free public access. The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code) You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The Geological Survey of Queensland (GSQ) has released this Queensland Geology Digital Data update to replace the previous 2008 Geoldata release. Spatial and Graphic Services within GSQ have undertaken a major redevelopment to migrate existing data to an Enterprise Geodatabase. Our ArcInfo workstation platform has been retired. …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. The Geological Survey of Queensland (GSQ) has released this Queensland Geology Digital Data update to replace the previous 2008 Geoldata release. Spatial and Graphic Services within GSQ have undertaken a major redevelopment to migrate existing data to an Enterprise Geodatabase. Our ArcInfo workstation platform has been retired. This has allowed us to utilise the inherent data validation, integrity checking and relationship features of the geodatabase to provide improved data quality. As this is a major milestone, as well as making the data available on this DVD, we are incorporating the Detailed, Regional and Queensland Geology polygonised vector data into the Interactive Resource and Tenure Maps (IRTM) system for display, query and download of ESRI shape files. Along with new project work, GSQ will continue a maintenance program of the enterprise Geodatabase to edge-match, correct topology and complete a State-wide polygonised vector best scale dataset. It is proposed that data releases will become more frequent. When changes are considered substantial by the Geoscience Manager, digital data will be extracted and a new Geoldata DVD released. This DVD data was extracted from the feature datasets in the GSQ Geology Enterprise Geodatabase in early November 2011. This edition provides new and updated geology over the North-West Queensland Mineral and Energy Province, Hodgkinson Province, South-East Queensland, North Connors Province and Drummond Basin. Seamless data is provided within each of these areas and topological errors have been corrected for NWQMEP and Drummond Basin, while validation in other areas is ongoing and will be available in future releases. For the NWQMEP, Georgetown and Charters Towers GIS areas solid geology interpretation has been completed and is provided as an additional dataset. This edition also includes the August 2012 release of the new Queensland Structural Framework and Queensland Geology. Dataset History GEOLDATA for detailed geology was in many cases previously compiled from field mapping over 1:100 000 map extents. These were completed by different geologists sometimes over many field seasons, with different interpretations. The DVD 1 detailed geology dataset has been extracted from the Geodatabase using a GDA94 standard 1:250 000 map tile extent. The DVD 2 detailed geology dataset has been provided as a statewide extract. Edge matching between the 100K tile edges within this 250K extent may still be in progress. The geological data will be seamless where the field mapping was completed for a specific project extent e.g. Yarrol Province. The original data capture over most of the 100K tile extents, was compiled based on the Australian Geodetic Datum 1966. This data was projected to GDA94 for inclusion in the geodatabase. The data required to be captured for a specific 100K tile based on AGD66, will not be exactly the same as that needed to cover a 100K tile extent based on GDA94. Currently, there may still exist in a few situations, a 'gap' in geological information between adjoining sheets at the outer edges of project areas. These 'gaps' may occur where older project areas were field mapped and captured for ADG66 map production, and they abut more recent project areas which were field mapped and captured for GDA94 map production. Edge mapping adjustments are to be made. Similarly GEOLDATA for regional datasets were previously compiled from 1:500 000 or 1:1000 000 hard copy maps which were based on the Australian Geodetic Datum 1966 and so their map boundary latitude and longitudes were derived from that AGD66 Datum. The digital data captured from these maps was projected to GDA94 for migration to the Geodatabase, and so the GDA94 lat/long extents of the datasets will not coincide with the same lat and long values of the original AGD66 drawn map graticule. Data matching between Regional Datasets will seldom occur. Dataset Citation Geological Survey of Queensland (2012) QLD Geological Digital Data - QLD Geology, Structural Framework, November 2012. Bioregional Assessment Source Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/a841bdfd-376c-4c7b-afd4-e92aba991f06.
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.General DescriptionThis layer shows only Active Roads on DNR Lands in black. This does not include abandoned, orphaned, decommisioned, or closed roads on DNR lands. Roads not on DNR Lands are of unknown status are shown in grey. Roads not on DNR lands and of unknown status may not be drivable. IncludesThe ROAD feature class stores the spatial location and attributes of the State of Washington, Department of Natural Resources’ (DNR) forest roads and of other DNR, public and selected private roads in the state. Other elements of the transportation network such as ferries, railroads, and trails are not included. ContactWashington State Department of Natural Resources (WA DNR) Engineering DivisionAlexandra WashburnAlexandra.Washburn@dnr.wa.gov Updating EffortsUpdating and editing efforts are primarily focused on roads in DNR managed state lands, adjunct roads or in areas that are covered by a published map that is undergoing an update. The original road lines were entered primarily by digitizing from paper maps, scanning by machine, or derived stereoscopically from black and white photo imagery. They are currently updated and corrected as needed, in most cases using on-line, geo-referenced orthophotography, stereo color imagery, GPS or field survey.Roads on DNR Lands should be edited frequently by division staff.Roads outside of DNR Lands are probably edited much less frequently. The group in mapping that did this, does not do it anymore.AttributesThe ROAD layer includes basic attributes that are linked to the intersection-based road segments. These attributes store information about route id, road name, road number, control, responsibility, status, access, surface, classification, and abandonment.PurposeThis layer is used to help in road infrastructure planning and maintenance, Forest Practices and Road Maintenance and Abandonment Planning (RMAP) compliance reporting, forest management, timber sales planning, and is the basis for the ROAD_ROUTE_FT layer and associated event tables that currently record these maintenance activities and road easements. It is widely used as a layer in cartographic presentations and published maps.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Water files are provided for the mapping of inland and coastal waters, Great Lakes and the St. Lawrence River. These files were created to be used in conjunction with the boundary files.
World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.