This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).
This product provides tabular data from the U.S. Department of Agriculture (USDA) Census of Agriculture for selected items for the period 1950-2017 for counties in the conterminous United States. Data from 1950-2012 are taken from LaMotte (2015) and 2017 data are retrieved from the USDA QuickStats online tool. Data which are withheld in the Census of Agriculture are filled with estimates. The data include crop production values for 12 commodities (for example, corn in bushels), land use values for 7 land use types (for example, acres of total cropland), and 9 values for livestock types (for example, number of hogs and pigs). The data are largely intended as a 2017 update to the LaMotte dataset for items of research interest. LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016.
This metadata report documents tabular data sets consisting of items from the Census of Agriculture. These data are a subset of items from county-level data (including state totals) for the conterminous United States covering the census reporting years (every five years, with adjustments for 1978 and 1982) beginning with the 1950 Census of Agriculture and ending with the 2012 Census of Agriculture. Historical (1950-1997) data were extracted from digital files obtained through the Intra-university Consortium on Political and Social Research (ICPSR). More current (1997-2012) data were extracted from the National Agriculture Statistical Service (NASS) Census Query Tool for the census years of 1997, 2002, 2007, and 2012. Most census reports contain item values from the prior census for comparison. At times these values are updated or reweighted by the reporting agency; the Census Bureau prior to 1997 or NASS from 1997 on. Where available, the updated or reweighted data were used; otherwise, the original reported values were used. Changes in census item definitions and reporting as well as changes to county areas and names over the time span required a degree of manipulation on the data and county codes to make the data as comparable as possible over time. Not all of the census items are present for the entire 1950-2012 time span as certain items have been added since 1950 and when possible the items were derived from other items by subtracting or combining sub items. Specific changes and calculations are documented in the processing steps sections of this report. Other missing data occurs at the state and (or) county level due to census non-disclosure rules where small numbers of farms reporting an item have acres and (or) production values withheld to prevent identification of individual farms. In general, caution should be exercised when comparing current (2012) data with values reported in earlier censuses. While the 1974-2012 data are comparable, data prior to 1974 will have inflated farm counts and slightly inflated production amounts due to the differences in collection methods, primarily, the definition of a farm. Further discussion on comparability can be found the comparability section of the Supplemental Information element of this metadata report. Excluded from the tabular data are the District of Columbia, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the three county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. Data for independent cities of Virginia prior to 1959 have been included with their surrounding or adjacent county. Please refer to the Supplemental Information element for information on terminology, the Census of Agriculture, the Inter-university Consortium for Political and Social Research (ICPSR), table and variable structure, data comparability, all farms and economic class 1-5 farms, item calculations, increase of farms from 1974 to 1978, missing data and exclusion explanations, 1978 crop irregularities, pastureland irregularities, county alignment, definitions, and references. In addition to the metadata is an excel workbook (VariableKey.xlsx) with spreadsheets containing key spreadsheets for items and variables by category and a spreadsheet noting the presence or absence of entire variable data by year. Note: this dataset was updated on 2016-02-10 to populate omitted irrigation values for Miami-Dade County, Florida in 1997.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Hagerstown by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Hagerstown. The dataset can be utilized to understand the population distribution of Hagerstown by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Hagerstown. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Hagerstown.
Key observations
Largest age group (population): Male # 5-9 years (1,876) | Female # 25-29 years (1,950). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hagerstown Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Peoria population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Peoria. The dataset can be utilized to understand the population distribution of Peoria by age. For example, using this dataset, we can identify the largest age group in Peoria.
Key observations
The largest age group in Peoria, IL was for the group of age 25 to 29 years years with a population of 8,480 (7.56%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Peoria, IL was the 80 to 84 years years with a population of 1,950 (1.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Peoria Population by Age. You can refer the same here
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
The full documentation is available here. For basic field details, please see the data dictionary.
Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000.
This dataset was created by the United States Census Bureau.
Which countries have made the largest improvements in life expectancy? Based on current trends, how long will it take each country to catch up to today’s best performers?
You can use Kernels to analyze, share, and discuss this data on Kaggle, but if you’re looking for real-time updates and bigger data, check out the data on BigQuery, too: https://cloud.google.com/bigquery/public-data/international-census.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ithaca town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ithaca town. The dataset can be utilized to understand the population distribution of Ithaca town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ithaca town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ithaca town.
Key observations
Largest age group (population): Male # 15-19 years (1,950) | Female # 15-19 years (1,957). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ithaca town Population by Gender. You can refer the same here
The study of social class and corresponding measurement schemes has evolved separately in Europe and the US. On both continents a standardized occupational coding system exists that can be transferred into a wide scala of measures of socioeconomic status. This dataset contains a crosswalk between the two standardized historical occupational coding schemes: HISCO and Occ1950.
The Historical International Standardized Classification of Occupations (HISCO) is the European standard for occupational coding and can be used to generate social class schemes, such as HISCLASS, SOCPO, and HISCAM. The U.S. Bureau of the Census' 1950 standard (Occ1950) is the U.S. standard for occupational coding and can be used to generate social class schemes, like NPBOSS, OCCSCORE, PRESGL, and SEI. With the crosswalk, HISCO can be converted to the American class coding schemes and Occ1950 into the European class coding schemes.
Occupational categories were linked between HISCO and Occ1950 on the underlying occupations. Both HISCO and Occ1950 consist of multiple layers of occupational groups. HISCO is divided in 7 major, 76 minor, 296 unit, and 1,675 micro groups, which roughly correspond with: social classes, sectors, occupational groups, and occupational subgroups. Occ1950 on the other hand is divided in 10 social classes and 269 occupational groups. HISCO’s micro groups and Occ1950’s occupational subgroups are based on a well-documented number of occupations, which can easily be compared and matched between both occupational coding schemes.
In the translation from HISCO to Occ1950 1,675 occupational categories were collapsed into 229 Occ1950 unique occupational groups. Although 40 occupational groups in Occ1950 could not be retrieved from HISCO, all occupations were successfully attributed to the right social class. Vice versa, 269 occupational groups in Occ1950 were recoded into 227 HISCO micro groups. Together these 227 unique codes are well-spread over the different branches of the HISCO tree, as they cover most of the unit groups.
This dataset contains information on the number of deaths and age-adjusted death rates for the five leading causes of death in 1900, 1950, and 2000. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left in place to preserve the areas of the surrounding counties. Baltimore City, Maryland was combined with Baltimore County and the St. Louis City, Missouri, was combined with St. Louis County. La Paz County, Arizona was combined with Yuma County, Arizona and Cibola County, New Mexico was combined with Valencia County, New Mexico. Minor county border changes were at a level of precision beyond the scope of the data collection. A major objective of the census data tabulation is to maintain a reasonable degree of comparability of agricultural data from census to census. The tabular data collection is from 14 different censuses where definitions and data collection techniques may change over time and while the data are mostly comparable, a degree of caution should be exercised when using the data in analysis procedures. While the data are at a county-level resolution, a regional approach is more appropriate than a county-by-county analysis. The main purpose of this layer is to provide a base to generate a county raster for the allocation of agricultural census values to specific (agricultural) pixels. Vector format is provided so the raster pixel size can be user designated. References cited: LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016. National Historical Geographic Information System, Minnesota Population Center, 2004, Historic counties for the 2000 census of population and housing: Minneapolis, MN, University of Minnesota, accessed 03/18/2013 at http://nhgis.org
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Burgaw population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Burgaw. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,950 (60.80% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Burgaw Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the El Dorado Springs population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of El Dorado Springs. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,950 (55.01% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for El Dorado Springs Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Henry County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Henry County. The dataset can be utilized to understand the population distribution of Henry County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Henry County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Henry County.
Key observations
Largest age group (population): Male # 55-59 years (1,821) | Female # 60-64 years (1,950). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Henry County Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Bedford County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Bedford County. The dataset can be utilized to understand the population distribution of Bedford County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Bedford County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Bedford County.
Key observations
Largest age group (population): Male # 60-64 years (1,950) | Female # 60-64 years (1,920). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bedford County Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Summerville by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Summerville. The dataset can be utilized to understand the population distribution of Summerville by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Summerville. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Summerville.
Key observations
Largest age group (population): Male # 55-59 years (1,950) | Female # 60-64 years (2,135). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Summerville Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of East Providence by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for East Providence. The dataset can be utilized to understand the population distribution of East Providence by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in East Providence. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for East Providence.
Key observations
Largest age group (population): Male # 30-34 years (1,950) | Female # 30-34 years (2,297). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for East Providence Population by Gender. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).