Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Day town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Day town. The dataset can be utilized to understand the population distribution of Day town by age. For example, using this dataset, we can identify the largest age group in Day town.
Key observations
The largest age group in Day, New York was for the group of age 60 to 64 years years with a population of 154 (18.16%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Day, New York was the 5 to 9 years years with a population of 3 (0.35%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Day town Population by Age. You can refer the same here
Public Law 94-171, enacted in 1975, directs the Census Bureau to make special preparations to provide redistricting data needed by the 50 states. It specifies that within a year following Census Day, the Census Bureau must send the governor and legislative leadership in each state the data they need to redraw districts for the United States Congress and state legislature. To meet this legal requirement, the Census Bureau set up a program that affords state officials an opportunity before each decennial census to define the small areas for which they wish to receive census population totals for redistricting purposes. Officials may receive data for voting districts (e.g., election precincts, wards) and state house and senate districts, in addition to standard census geographic areas such as counties, cities, census tracts, and tabulation blocks. State participation in defining areas is voluntary and nonpartisan.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of children missing education at the census date in each term. Includes Autumn 2022 to Autumn 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Day town household income by gender. The dataset can be utilized to understand the gender-based income distribution of Day town income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Day town income distribution by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book series is Economic census studies. It features 9 columns including author, publication date, language, and book publisher.
Occupancy status, Units, Rooms, Year built, Owner/Renter (Tenure), Mortgage/Rent costs, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP04. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Census 2021 data outlining the primary industry for people who were not employed on census day. This dataset is at the section level of the Standard Industrial Classification.
The 2020 decennial census blocks within Fairfax County. This data was acquired from the US Census Bureau, with fields slightly customized by Fairfax County Department of Management and Budget, Economic, Demographic, and Statistical Research unit.Contact: Department of Management & BudgetData Accessibility: Publicly AvailableUpdate Frequency: As NeededLast Revision Date: 1/6/2023Creation Date: 1/6/2023Feature Dataset Name: DIT_GIS.DSMHSMGR.FEDERAL_CENSUS_2020Layer Name: DIT_GIS.DSMHSMGR.FEDERAL_BLOCK_2020
As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking, hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Residential water use in the EnviroAtlas-defined study area is estimated at between 81 and 100 GPD. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Day town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Day town. The dataset can be utilized to understand the population distribution of Day town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Day town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Day town.
Key observations
Largest age group (population): Male # 60-64 years (70) | Female # 60-64 years (84). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Day town Population by Gender. You can refer the same here
As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Local use data, as prepared for several cities for the Chicago Metropolitan Agency for Planning and at the county level by USGS, were used. Within the Chicago study area, the 1998-2010 average estimates ranged from 33 to 196 GPD. This dataset was produced by the U.S. EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This file is a best fit lookup between output areas (December 2011) and local authority districts (December 1961) in England and Wales (File Size - 3 MB)Field Names - OA11CD, LAD61CD, LAD61NM, FIDField Types - Text, Text, TextField Lengths - 9, 9, 42FID = The FID, or Feature ID is created by the publication process when the names and codes / lookup products are published to the Open Geography portal.
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents. Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date). COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date. Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are spec
As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Residential Gallons per Capita per Day (RGPCD) in the EnviroAtlas-defined study area is available through the Commonwealth of Massachusetts' (mass.gov). Within the New Bedford boundary, there are five service providers with 2008-2013 estimates ranging from 45 to 76 GPD.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by Census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking, hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Specific to Los Angeles, CA, Urban Water Management Plans (available via data.ca.gov and individual providers) and an average of available Residential Gallons Per Capita per Day (R-GPCD) data (available through the California State Water Resources Control Board (CSWRCB)) were used. Within the EnviroAtlas community boundary, provider estimates range from 42 to 255 GPD. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day (GPD), distributed dasymetrically, and summarized by census block group. Domestic water use, as defined in this case, is intended to represent residential indoor and outdoor water use (e.g., cooking hygiene, landscaping, pools, etc.) for primary residences (i.e., excluding second homes and tourism rentals). For the purposes of this metric, these publicly-supplied estimates are also applied and considered representative of local self-supplied water use. Local provider Water Management and Conservation Plans in Oregon and USGS Water Use estimates in Washington were used. Within the Portland boundary, the 2007-2013 estimates ranged from 58 to 120 GPD. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
VITAL SIGNS INDICATOR Commute Time (T3)
FULL MEASURE NAME Commute time by residential location
LAST UPDATED April 2020
DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.
DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm
U.S. Census Bureau: American Community Survey Form B08013 (2006-2018; place of residence; overall time) Form C08136 (2006-2018; place of residence; time by mode) Form B08301 (2006-2018; place of residence) www.api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.
For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.
Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents.
The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the John Day population by age. The dataset can be utilized to understand the age distribution and demographics of John Day.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset has been retired as of February 17, 2023. This dataset will be kept for historical purposes, but will no longer be updated. Similar data are available on the state’s open data portal: https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.
A. DATASET DESCRIPTION This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2019 American Community Survey (ACS) 5-year population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to March 18th, 2020 when the first person in Marin County tested positive for COVID-19. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
Geographic areas summarized are: 1. City, Town, or Community Area 2. Census Tracts 3. Census ZIP Code Tabulation Areas (ZCTAs)
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by Marin County HHS. Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2019 ACS estimates for population provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
C. UPDATE PROCESS Geographic analysis is scripted by Marin HHS staff and synced to this dataset each day.
D. HOW TO USE THIS DATASET This dataset can be used to track the spread of COVID-19 throughout Marin County in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. For example if a zip code did not have 10 cumulative cases until June 1, 2020 that location will not be included in the dataset until June 1. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. 3. Cases are dropped altogether for areas where acs_population < 1000. Some adjacent geographic areas may be combined until the ACS population exceeds 1,000 to still provide information for these regions.
Note: 14-day case rate or 30-day case rate where the counts are lower than 20 may be unstable. We advise caution in interpreting rates at these small numbers.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Day town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Day town. The dataset can be utilized to understand the population distribution of Day town by age. For example, using this dataset, we can identify the largest age group in Day town.
Key observations
The largest age group in Day, New York was for the group of age 60 to 64 years years with a population of 154 (18.16%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Day, New York was the 5 to 9 years years with a population of 3 (0.35%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Day town Population by Age. You can refer the same here