62 datasets found
  1. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Nov 26, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  2. T

    United States MBA 30-Yr Mortgage Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA 30-Yr Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/mortgage-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1990 - Nov 21, 2025
    Area covered
    United States
    Description

    Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. Retail Interest Rates - Mortgage Rates

    • data.gov.ie
    • opendata.centralbank.ie
    • +1more
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2025). Retail Interest Rates - Mortgage Rates [Dataset]. https://data.gov.ie/dataset/retail-interest-rates-mortgage-rates
    Explore at:
    Dataset updated
    Aug 15, 2025
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Table B.3.1 presents quarterly mortgage rate data specific to the Irish market. These data include all euro and non-euro denominated mortgage lending in the Republic of Ireland only. New business refers to new mortgage lending drawdowns during the quarter, broken down by type of interest rate product (i.e. fixed, tracker and SVR). The data also provide further breakdown of mortgages for principal dwelling house (PDH) and buy-to-let (BTL) properties. Renegotiations of existing loans are not included. .hidden { display: none }

  4. T

    Sweden Interest Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sweden Interest Rate [Dataset]. https://tradingeconomics.com/sweden/interest-rate
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 26, 1994 - Nov 5, 2025
    Area covered
    Sweden
    Description

    The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. Jumbo 30-Year Fixed Mortgage Rates

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Jumbo 30-Year Fixed Mortgage Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/jumbo-30-year-fixed-mortgage-rates/code
    Explore at:
    zip(110462 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Jumbo 30-Year Fixed Mortgage Rates

    Zillow Home Value Forecast and Cash Buyer Data

    By Zillow Data [source]

    About this dataset

    This dataset tracks the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours. It provides insight into changes in the housing market and helps consumers make wiser decisions with their investments. In addition to tracking monthly mortgage rates, our dataset also covers consumer's home types and housing stock, cash buyer data, Zillow Home Value Forecast (ZHVF), negative equity metrics, affordability forecasts for both mortgages and rents as well as historic data including historical ZHVI and household income. With this unique blend of financial and real estate information, users are empowered to make more informed decisions about their investments. The data is updated weekly with the most recent statistics available so that users always have access to up-to-date information

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to Use This Dataset:

    • To start exploring this dataset, identify what type of home you are interested in by selecting one of the four categories: “all homes” (Zillow defines all homes as single family, condominiums and coops with a county record); multifamily 5+; duplex/triplex; or condos/coops.
    • Understand additional data products that are included such as Zillow Home Value Forecast (ZHVF), Cash Buyers % share, affordability metrics like mortgage affordability or rental affordability and historical ZHVI values along with its median value for particular households or geographies which needs deeper insights into other endogenous variables such detailed information like how many bedrooms a house has etc.
    • Choose your geographic region on which you would want to collect more information– regions could include city breakdowns from nationwide level down till specific metropolitan etc . Also use special crosswalks available if needed between federally defined metrics for counties / metro areas combined with Zillow's own ones for greater accuracy when analysing external facors effect on data . To download all datasets at once - click here. .

    • Gather more relevant external factors for analysis such as home values forecasts using our published methodology post given url , further to mention TransUnion credit bureau related debt amounts also consider median household incomes vis Bureaus of Labor Cost Indexes ; All these give us greater dimensional insights into market dynamics affecting any particular region finally culminating into deeper research findings when taken together . The reasons behind any fluctions observed can be properly derived as a result .

              Finally make sure that proper attribution is alwys done following mentioned Terms Of Use while downloading since 'All Data Accessed And Downloaded From This Page Is Free For Public Use By Consumers , Media
      

    Research Ideas

    • Using the Mortgage Rate Data to devise strategies to help persons purchasing jumbo mortgages determine the best time and rates to acquire a loan.
    • Analyzing trends in the market by investigating changes in affordability over time by studying rent and mortgage affordability, price-to-income ratios, and historical ZHVIs with cash buyers.
    • Comparing different areas of housing markets over diverse geographies using data on all homes, condos/co-ops, multifamily dwellings 5+ units, duplexes/triplexes across various counties or metro areas

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: MortgageRateJumboFixed.csv | Column name | Description | |:---------------------------|:---------------------------------------------------------------------------------------------------------------| | Date | The date of the mortgage rate. (Date) | | TimePeriod | The time period of the ...

  6. e

    Loans broken down by interest rate type by year

    • data.europa.eu
    • find.data.gov.scot
    • +3more
    csv
    Updated Nov 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://usmart.io/#/org/dhplg (2016). Loans broken down by interest rate type by year [Dataset]. https://data.europa.eu/data/datasets/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-b7d321e7-85c0-40bb-8223-804b4932abd5?locale=et
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 18, 2016
    Dataset provided by
    https://usmart.io/#/org/dhplg
    Description

    Source: From lending institutions and local authorities
    The loan payments dataset stops in 2007.
    The figures on fixed interest rate mortgages relate to mortgages which provide that the rate of interest may not be changed, or may only be changed at intervals of not less than one year.
    The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

  7. Canada Mortgage and Housing Corporation, conventional mortgage lending rate,...

    • www150.statcan.gc.ca
    • thelearningbarn.org
    • +3more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Canada Mortgage and Housing Corporation, conventional mortgage lending rate, 5-year term [Dataset]. http://doi.org/10.25318/3410014501-eng
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).

  8. Average mortgage interest rates in the UK 2000-2025, by month and type

    • statista.com
    Updated Sep 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average mortgage interest rates in the UK 2000-2025, by month and type [Dataset]. https://www.statista.com/statistics/386301/uk-average-mortgage-interest-rates/
    Explore at:
    Dataset updated
    Sep 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2000 - Oct 2025
    Area covered
    United Kingdom
    Description

    Mortgage rates surged at an unprecedented pace in 2022, with the average 10-year fixed rate doubling between March and December of that year. In response to mounting inflation, the Bank of England implemented a series of rate hikes, pushing borrowing costs steadily higher. By October 2025, the average 10-year fixed mortgage rate stood at **** percent. As financing becomes more expensive, housing demand has cooled, weighing on market sentiment and slowing house price growth. How have the mortgage hikes affected the market? After surging in 2021, the number of residential properties sold fell significantly in 2023, dipping to just above *** million transactions. This contraction in activity also dampened mortgage lending. Between the first quarter of 2023 and the first quarter of 2024, the value of new mortgage loans declined year-on-year for five consecutive quarters. Even as rates eased modestly in 2024 and housing activity picked up slightly, volumes remained well below the highs recorded in 2021. How are higher mortgages impacting homebuyers? For homeowners, the impact is being felt most acutely as fixed-rate deals expire. Mortgage terms in the UK typically range from two to ten years, and many borrowers who locked in historically low rates are now facing significantly higher repayments when refinancing. By the end of 2026, an estimated five million homeowners will see their mortgage deals expire. Roughly two million of these loans are projected to experience a monthly payment increase of up to *** British pounds by 2026, putting additional pressure on household budgets and constraining affordability across the market.

  9. Financial Conduct Authority data on mortgage type and fixed rate end date by...

    • ckan.publishing.service.gov.uk
    Updated Aug 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2023). Financial Conduct Authority data on mortgage type and fixed rate end date by region, as at end 2022 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/financial-conduct-authority-data-on-mortgage-type-and-fixed-rate-end-date-by-region-as-at-2022
    Explore at:
    Dataset updated
    Aug 16, 2023
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset contains two sheets showing: The number of regulated mortgages outstanding as at end 2022 in the UK by region/country, broken down by interest rate type (for example fixed rate, Standard Variable Rate etc) The number regulated fixed rate mortgages outstanding as at end 2022 in the UK by region/country, broken down by the month in which the fixed rate ('incentive rate') ends The data was provided to the GLA by the FCA, and the source is FCA Mortgages Performance Product Sales Data (PSD007).

  10. T

    Canada Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Interest Rate [Dataset]. https://tradingeconomics.com/canada/interest-rate
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 7, 1990 - Oct 29, 2025
    Area covered
    Canada
    Description

    The benchmark interest rate in Canada was last recorded at 2.25 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. Negative Equity Trends in US Housing Markets

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Negative Equity Trends in US Housing Markets [Dataset]. https://www.kaggle.com/datasets/thedevastator/negative-equity-trends-in-us-housing-markets-201
    Explore at:
    zip(3193953 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Negative Equity Trends in US Housing Markets

    Time Series Data Across Regions and Housing Types

    By Zillow Data [source]

    About this dataset

    • This unique dataset explores the trends in negative equity within US housing markets from 2011 to 2017, allowing users to uncover the various factors and determinants that affected the outcome in each market. With data provided on all home types such as single-family homes, condominiums, and co-ops, as well as special metrics such as cash buyers and affordability analyses, you will be able to gain a comprehensive understanding of how these forces have interacted over time. Using this data you can not only learn more about historical behavior but also make predictions for future trends in these impacts.

    • In addition to data collected by Zillow through their own internal resources, they have also partnered with TransUnion and other affiliate sources to give an even more precise look into what has been driving these changing dynamics across US housing markets. Such information includes negative equity metrics which allow us to track actual outstanding home-related debt amounts over time - a valuable resource when evaluating potential investments or relocations!

    • And of course with any dataset there are a few guiding principles that one should take note of before delving in – this is especially true when it comes down to copyright issues or prohibited uses; though all data can be freely obtained here for public use - clear attribution of such information is legally required at all times (as stated on Zillow’s very own Terms & Conditions page). Furthermore additional resources such as Mortgage Rate Series or Jumbo Mortgages are also available through Zillow; again making sure that appropriate disclaimers are read before utilizing them.

    Regardless this little treasure trove of knowledge is waiting at your fingertips – whether you’re trying your luck investing wise or just looking for an area where renting rates are equitable compared real estate values; it provides everything you need understand regional housing market fluctuations over the last half decade!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides historical and current trends in negative equity (the amount a mortgage is underwater) across the United States. It contains negative equity data from Zillow, one of the leading real estate data providers. The dataset covers all housing types (including single family, condominiums and co-ops). Additionally, it includes cash buyers share, mortgage affordability index, rental affordability index and other relative measures of affordability for US metro areas. This guide will help you understand how to use this data set for your own analysis.

    Overview of Covered Data:

    The dataset contains time series data that shows your current trend in negative equity rate as well as some associated metrics across different scales such as region, county, city and MSA level. To access this information you will need to take following columns into consideration while using this data set:

    • RegionName: Name of the region (e.g., city/county/MSA)
    • SizeRank: Ranking of the region by size
    • RegionType: Type of region (e.g., city/county/state)
    • StateName: Name of the state
    • MSA: Metropolitan Statistical Area FORMAT_4C A4 RINFOX_ RTI Information Exchange File Format [multi value 9] FORMAT_3E A3 FITS Flexible Image Transport System VERSION 4C 3E 1 Language Indicator 0 0 1 1 DONTCOPY 536880031 FILEEXTN 3 Stream Type buffer 'USTD' file version 2 HNEED 8 FILETYPE 'UDIO' creation date 05 FEB 1985 Source FMT0025 APPLICAT TRAINFORM File Organization Spooled Files DF140520 Header Block Length in Words 682 with Header Offset 636 / ULQUACK INTLCHAN * ETBFMT(V7R2),D*RECORD ACCOUNT CRFTIME FT240187 batch process status continuous Availability Continuous Version number V03C02 LOADAT AT04

    Research Ideas

    • Analyzing which markets have been disproportionately affected by the housing crisis and utilizing this information to inform investment strategies and...
  12. S

    Switzerland Mortgage Rate: Fixed: by Maturity: 2 Years

    • ceicdata.com
    Updated Jul 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Switzerland Mortgage Rate: Fixed: by Maturity: 2 Years [Dataset]. https://www.ceicdata.com/en/switzerland/mortgage-rates/mortgage-rate-fixed-by-maturity-2-years
    Explore at:
    Dataset updated
    Jul 31, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2017 - May 1, 2018
    Area covered
    Switzerland
    Variables measured
    Lending Rate
    Description

    Switzerland Mortgage Rate: Fixed: by Maturity: 2 Years data was reported at 1.078 % pa in Sep 2018. This records a decrease from the previous number of 1.079 % pa for Aug 2018. Switzerland Mortgage Rate: Fixed: by Maturity: 2 Years data is updated monthly, averaging 1.270 % pa from Jan 2008 (Median) to Sep 2018, with 129 observations. The data reached an all-time high of 4.290 % pa in Jun 2008 and a record low of 1.065 % pa in Aug 2017. Switzerland Mortgage Rate: Fixed: by Maturity: 2 Years data remains active status in CEIC and is reported by Swiss National Bank. The data is categorized under Global Database’s Switzerland – Table CH.M005: Mortgage Rates.

  13. Lending Club Loan Data Analysis

    • kaggle.com
    zip
    Updated May 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vikas Chellaboina (2021). Lending Club Loan Data Analysis [Dataset]. https://www.kaggle.com/datasets/urstrulyvikas/lending-club-loan-data-analysis/code
    Explore at:
    zip(218250 bytes)Available download formats
    Dataset updated
    May 24, 2021
    Authors
    Vikas Chellaboina
    Description

    DESCRIPTION

    Create a model that predicts whether or not a loan will be default using the historical data.

    Problem Statement:

    For companies like Lending Club correctly predicting whether or not a loan will be a default is very important. In this project, using the historical data from 2007 to 2015, you have to build a deep learning model to predict the chance of default for future loans. As you will see later this dataset is highly imbalanced and includes a lot of features that make this problem more challenging.

    Domain: Finance

    Analysis to be done: Perform data preprocessing and build a deep learning prediction model.

    Content:

    Dataset columns and definition:

    credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.

    purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other").

    int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.

    installment: The monthly installments owed by the borrower if the loan is funded.

    log.annual.inc: The natural log of the self-reported annual income of the borrower.

    dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income).

    fico: The FICO credit score of the borrower.

    days.with.cr.line: The number of days the borrower has had a credit line.

    revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).

    revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).

    inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months.

    delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years.

    pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).

    Steps to perform:

    Perform exploratory data analysis and feature engineering and then apply feature engineering. Follow up with a deep learning model to predict whether or not the loan will be default using the historical data.

    Tasks:

    1. Feature Transformation

    Transform categorical values into numerical values (discrete)

    1. Exploratory data analysis of different factors of the dataset.

    2. Additional Feature Engineering

    You will check the correlation between features and will drop those features which have a strong correlation

    This will help reduce the number of features and will leave you with the most relevant features

    1. Modeling

    After applying EDA and feature engineering, you are now ready to build the predictive models

    In this part, you will create a deep learning model using Keras with Tensorflow backend

  14. Lending Club Loan Dataset

    • kaggle.com
    zip
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utkarsh Singh (2023). Lending Club Loan Dataset [Dataset]. https://www.kaggle.com/datasets/utkarshx27/lending-club-loan-dataset/code
    Explore at:
    zip(827744 bytes)Available download formats
    Dataset updated
    May 10, 2023
    Authors
    Utkarsh Singh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description

    This data set represents thousands of loans made through the Lending Club platform, which is a platform that allows individuals to lend to other individuals. Of course, not all loans are created equal. Someone who is a essentially a sure bet to pay back a loan will have an easier time getting a loan with a low interest rate than someone who appears to be riskier. And for people who are very risky? They may not even get a loan offer, or they may not have accepted the loan offer due to a high interest rate. It is important to keep that last part in mind, since this data set only represents loans actually made, i.e. do not mistake this data for loan applications!

    Format

    A data frame with 10,000 observations on the following 55 variables.

    emp_title

    Job title.

    emp_length

    Number of years in the job, rounded down. If longer than 10 years, then this is represented by the value 10.

    state

    Two-letter state code.

    homeownership

    The ownership status of the applicant's residence.

    annual_income

    Annual income.

    verified_income

    Type of verification of the applicant's income.

    debt_to_income

    Debt-to-income ratio.

    annual_income_joint

    If this is a joint application, then the annual income of the two parties applying.

    verification_income_joint

    Type of verification of the joint income.

    debt_to_income_joint

    Debt-to-income ratio for the two parties.

    delinq_2y

    Delinquencies on lines of credit in the last 2 years.

    months_since_last_delinq

    Months since the last delinquency.

    earliest_credit_line

    Year of the applicant's earliest line of credit

    inquiries_last_12m

    Inquiries into the applicant's credit during the last 12 months.

    total_credit_lines

    Total number of credit lines in this applicant's credit history.

    open_credit_lines

    Number of currently open lines of credit.

    total_credit_limit

    Total available credit, e.g. if only credit cards, then the total of all the credit limits. This excludes a mortgage.

    total_credit_utilized

    Total credit balance, excluding a mortgage.

    num_collections_last_12m

    Number of collections in the last 12 months. This excludes medical collections.

    num_historical_failed_to_pay

    The number of derogatory public records, which roughly means the number of times the applicant failed to pay.

    months_since_90d_late

    Months since the last time the applicant was 90 days late on a payment.

    current_accounts_delinq

    Number of accounts where the applicant is currently delinquent.

    total_collection_amount_ever

    The total amount that the applicant has had against them in collections.

    current_installment_accounts

    Number of installment accounts, which are (roughly) accounts with a fixed payment amount and period. A typical example might be a 36-month car loan.

    accounts_opened_24m

    Number of new lines of credit opened in the last 24 months.

    months_since_last_credit_inquiry

    Number of months since the last credit inquiry on this applicant.

    num_satisfactory_accounts

    Number of satisfactory accounts.

    num_accounts_120d_past_due

    Number of current accounts that are 120 days past due.

    num_accounts_30d_past_due

    Number of current accounts that are 30 days past due.

    num_active_debit_accounts

    Number of currently active bank cards.

    total_debit_limit

    Total of all bank card limits.

    num_total_cc_accounts

    Total number of credit card accounts in the applicant's history.

    num_open_cc_accounts

    Total number of currently open credit card accounts.

    num_cc_carrying_balance

    Number of credit cards that are carrying a balance.

    num_mort_accounts

    Number of mortgage accounts.

    account_never_delinq_percent

    Percent of all lines of credit where the applicant was never delinquent.

    tax_liens

    a numeric vector

    public_record_bankrupt

    Number of bankruptcies listed in the public record for this applicant.

    loan_purpose

    The category for the purpose of the loan.

    application_type

    The type of application: either individual or joint.

    loan_amount

    The amount of the loan the applicant received.

    term

    The number of months of the loan the applicant received.

    interest_rate

    Interest rate of the loan the applicant received.

    installment

    Monthly payment for the loan the applicant received.

    grade

    Grade associated with the loan.

    sub_grade

    Detailed grade associated with the loan.

    issue_month

    Month the loan was issued.

    loan_status

    Status of the loan.

    initial_listing_status

    Initial listing status of the loan. (I think this has to do with whether the lender provided the entire loan or if the loan is across multiple lenders.)

    disbursement_method

    Dispersement method of the loan.

    balance

    Current...

  15. Funds advanced, outstanding balances, and interest rates for new and...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +3more
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Funds advanced, outstanding balances, and interest rates for new and existing lending, Bank of Canada [Dataset]. http://doi.org/10.25318/1010000601-eng
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 102 series, with data starting from 2013, and some select series starting from 2016. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Components (51 items: Total, funds advanced, residential mortgages, insured; Variable rate, insured; Fixed rate, insured, less than 1 year; Fixed rate, insured, from 1 to less than 3 years; ...), and Unit of measure (2 items: Dollars; Interest rate). For additional clarification on the component dimension, please visit the OSFI website for the Report on New and Existing Lending.

  16. T

    United States MBA Mortgage Applications

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA Mortgage Applications [Dataset]. https://tradingeconomics.com/united-states/mortgage-applications
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 12, 1990 - Nov 21, 2025
    Area covered
    United States
    Description

    Mortgage Application in the United States increased by 0.20 percent in the week ending November 21 of 2025 over the previous week. This dataset provides - United States MBA Mortgage Applications - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. h

    Annual Market Information Indices

    • opendata.housing.gov.ie
    • dtechtive.com
    • +3more
    Updated Dec 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Annual Market Information Indices [Dataset]. https://opendata.housing.gov.ie/dataset/annual-market-information-indices
    Explore at:
    Dataset updated
    Dec 9, 2016
    Description

    House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007. From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank. From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here: http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter. Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.

  18. T

    United States 15-Year Mortgage Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 15-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/15-year-mortgage-rate
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 29, 1991 - Nov 26, 2025
    Area covered
    United States
    Description

    15 Year Mortgage Rate in the United States decreased to 5.51 percent in November 27 from 5.54 percent in the previous week. This dataset includes a chart with historical data for the United States 15 Year Mortgage Rate.

  19. T

    Norway Interest Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Norway Interest Rate [Dataset]. https://tradingeconomics.com/norway/interest-rate
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1991 - Nov 6, 2025
    Area covered
    Norway
    Description

    The benchmark interest rate in Norway was last recorded at 4 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  20. a

    Assumable Mortgage National Research Database (2023-2025)

    • assumable.io
    application/html
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Assumable (2023). Assumable Mortgage National Research Database (2023-2025) [Dataset]. https://www.assumable.io/
    Explore at:
    application/htmlAvailable download formats
    Dataset updated
    Sep 11, 2023
    Dataset authored and provided by
    Assumable
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2023 - 2025
    Area covered
    Variables measured
    Texas Market Share, Florida Market Share, Current Active Listings, Average Annual Payment Savings, Average Monthly Payment Savings, Average 30-Year Interest Savings, Percentage of Homes with 2-3% APR, Total Assumable Mortgages Analyzed, Percentage of Homes with Rates Under 3.5%
    Description

    Comprehensive proprietary research analyzing 312,367 assumable mortgage homes from 2023-2025 across all 50 states, including interest rates, savings analysis, state distribution, price ranges, and down payment requirements.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate

United States 30-Year Mortgage Rate

United States 30-Year Mortgage Rate - Historical Dataset (1971-04-01/2025-11-26)

Explore at:
csv, json, xml, excelAvailable download formats
Dataset updated
Nov 26, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Apr 1, 1971 - Nov 26, 2025
Area covered
United States
Description

30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

Search
Clear search
Close search
Google apps
Main menu