37 datasets found
  1. Reported violent crime rate in the U.S. 1990-2023

    • statista.com
    • ai-chatbox.pro
    Updated Nov 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reported violent crime rate in the U.S. 1990-2023 [Dataset]. https://www.statista.com/statistics/191219/reported-violent-crime-rate-in-the-usa-since-1990/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.

  2. d

    Crime Data from 2020 to Present

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Crime Data from 2020 to Present [Dataset]. https://catalog.data.gov/dataset/crime-data-from-2020-to-present
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    data.lacity.org
    Description

    ***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.

  3. Crime rate U.S. 2023, by state

    • statista.com
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Crime rate U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/301549/us-crimes-committed-state/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the state with the highest crime rate in the United States per 100,000 inhabitants was New Mexico. That year, the crime rate was 3,636.83 crimes per 100,000 people. In comparison, New Hampshire had the lowest crime rate at 996.11 crimes per 100,000 people. Crime rate The crime rate in the United States has generally decreased over time. There are several factors attributed to the decrease in the crime rate across the United States. An increase in the number of police officers and an increase in income are some of the reasons for a decrease in the crime rate. Unfortunately, people of color have been disproportionately affected by crime rates, as they are more likely to be arrested for a crime versus a white person. Crime rates regionally The District of Columbia had the highest rate of reported violent crimes in the United States in 2023 per 100,000 inhabitants. The most common crime clearance type in metropolitan counties in the United States in 2020 was murder and non-negligent manslaughter. The second most dangerous city in the country in 2020 was Detroit. Detroit has faced severe levels of economic and demographic declines in the past years. Not only has the population decreased, the city has filed for bankruptcy. Despite the median household income increasing, the city still struggles financially.

  4. d

    Violent Crime Rate

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Violent Crime Rate [Dataset]. https://catalog.data.gov/dataset/violent-crime-rate-9a68e
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.

  5. UCI Communities and Crime Unnormalized Data Set

    • kaggle.com
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kavitha (2018). UCI Communities and Crime Unnormalized Data Set [Dataset]. https://www.kaggle.com/datasets/kkanda/communities%20and%20crime%20unnormalized%20data%20set/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kavitha
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.

    The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).

    Content

    The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)

    predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18

    Acknowledgements

    http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized

    U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),

    U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.

    However, I would like to try and answer the following questions answered.

    1. Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities

    2. How has unemployment changed crime rate(violent and non-violent) in the communities?

    3. Were people from a particular age group more vulnerable to crime?

    4. Does ethnicity play a role in crime rate?

    5. Has education played a role in bringing down the crime rate?

  6. d

    Data from: Homicides in New York City, 1797-1999 [And Various Historical...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Homicides in New York City, 1797-1999 [And Various Historical Comparison Sites] [Dataset]. https://catalog.data.gov/dataset/homicides-in-new-york-city-1797-1999-and-various-historical-comparison-sites-f1e29
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    New York
    Description

    There has been little research on United States homicide rates from a long-term perspective, primarily because there has been no consistent data series on a particular place preceding the Uniform Crime Reports (UCR), which began its first full year in 1931. To fill this research gap, this project created a data series on homicides per capita for New York City that spans two centuries. The goal was to create a site-specific, individual-based data series that could be used to examine major social shifts related to homicide, such as mass immigration, urban growth, war, demographic changes, and changes in laws. Data were also gathered on various other sites, particularly in England, to allow for comparisons on important issues, such as the post-World War II wave of violence. The basic approach to the data collection was to obtain the best possible estimate of annual counts and the most complete information on individual homicides. The annual count data (Parts 1 and 3) were derived from multiple sources, including the Federal Bureau of Investigation's Uniform Crime Reports and Supplementary Homicide Reports, as well as other official counts from the New York City Police Department and the City Inspector in the early 19th century. The data include a combined count of murder and manslaughter because charge bargaining often blurs this legal distinction. The individual-level data (Part 2) were drawn from coroners' indictments held by the New York City Municipal Archives, and from daily newspapers. Duplication was avoided by keeping a record for each victim. The estimation technique known as "capture-recapture" was used to estimate homicides not listed in either source. Part 1 variables include counts of New York City homicides, arrests, and convictions, as well as the homicide rate, race or ethnicity and gender of victims, type of weapon used, and source of data. Part 2 includes the date of the murder, the age, sex, and race of the offender and victim, and whether the case led to an arrest, trial, conviction, execution, or pardon. Part 3 contains annual homicide counts and rates for various comparison sites including Liverpool, London, Kent, Canada, Baltimore, Los Angeles, Seattle, and San Francisco.

  7. O

    Crime Reports

    • data.cambridgema.gov
    application/rdfxml +5
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge Police Department (2025). Crime Reports [Dataset]. https://data.cambridgema.gov/widgets/xuad-73uj
    Explore at:
    csv, tsv, application/rssxml, xml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    City of Cambridge Police Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    List of crime incidents featured in the Cambridge Police Department’s Annual Crime Reports and reported in the City of Cambridge since 2009. Includes more than 40 crime types. Certain crime types are excluded due to confidentiality and/or protection of privacy. Please Note: Addresses do not represent the actual location of the crime, but a near approximation within 100 block ranges. For reports published by the Cambridge Police Department’s Crime Analysis Unit, visit http://www.cambridgema.gov/cpd/Publications.aspx.

    Best Data at the Time: All statistics, including yearly totals and weighted averages, are calculated using the best available data at the time. Occasionally, after our reports are published, factors determined during investigation will cause us to reclassify a crime to a higher or lower category, and thus you may see slight discrepancies between current and past reports. In all cases, the more recent data is the more correct data.

    This dataset will be periodically revised to ensure compliance with all local, state and federal privacy rights and legal requirements.

  8. Uniform Crime Reporting Program Data: Offenses Known and Clearances by...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Uniform Crime Reporting Program Data: Offenses Known and Clearances by Arrest, 2012 [Dataset]. https://catalog.data.gov/dataset/uniform-crime-reporting-program-data-offenses-known-and-clearances-by-arrest-2012-834db
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    The UNIFORM CRIME REPORTING PROGRAM DATA: OFFENSES KNOWN AND CLEARANCES BY ARREST, 2012 dataset is a compilation of offenses reported to law enforcement agencies in the United States. Due to the vast number of categories of crime committed in the United States, the FBI has limited the type of crimes included in this compilation to those crimes which people are most likely to report to police and those crimes which occur frequently enough to be analyzed across time. Crimes included are criminal homicide, forcible rape, robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft. Much information about these crimes is provided in this dataset. The number of times an offense has been reported, the number of reported offenses that have been cleared by arrests, and the number of cleared offenses which involved offenders under the age of 18 are the major items of information collected.

  9. O

    Crime Reports

    • ianofaustin.com
    • data.austintexas.gov
    • +4more
    application/rdfxml +5
    Updated Apr 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2025). Crime Reports [Dataset]. https://www.ianofaustin.com/moving-to-austin
    Explore at:
    xml, json, application/rssxml, csv, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2025
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    AUSTIN POLICE DEPARTMENT DATA DISCLAIMER Please read and understand the following information.

    This dataset contains a record of incidents that the Austin Police Department responded to and wrote a report. Please note one incident may have several offenses associated with it, but this dataset only depicts the highest level offense of that incident. Data is from 2003 to present. This dataset is updated weekly. Understanding the following conditions will allow you to get the most out of the data provided. Due to the methodological differences in data collection, different data sources may produce different results. This database is updated weekly, and a similar or same search done on different dates can produce different results. Comparisons should not be made between numbers generated with this database to any other official police reports. Data provided represents only calls for police service where a report was written. Totals in the database may vary considerably from official totals following investigation and final categorization. Therefore, the data should not be used for comparisons with Uniform Crime Report statistics. The Austin Police Department does not assume any liability for any decision made or action taken or not taken by the recipient in reliance upon any information or data provided. Pursuant to section 552.301 (c) of the Government Code, the City of Austin has designated certain addresses to receive requests for public information sent by electronic mail. For requests seeking public records held by the Austin Police Department, please submit by utilizing the following link: https://apd-austintx.govqa.us/WEBAPP/_rs/(S(0auyup1oiorznxkwim1a1vpj))/supporthome.aspx

  10. g

    Data from: Uniform Crime Reports [United States], 1930-1959

    • gimi9.com
    • icpsr.umich.edu
    • +1more
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Uniform Crime Reports [United States], 1930-1959 [Dataset]. https://gimi9.com/dataset/data-gov_uniform-crime-reports-united-states-1930-1959-a3322/
    Explore at:
    Dataset updated
    Apr 2, 2025
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    This collection contains electronic versions of the Uniform Crime Reports publications for the early years of the Uniform Crime Reporting Program in the United States. The reports, which were published monthly from 1930 to 1931, quarterly from 1932 to 1940, and annually from 1941 to 1959, consist of tables showing the number of offenses known to the police as reported to the Federal Bureau of Investigation by contributing police departments. The term "offenses known to the police" includes those crimes designated as Part I classes of the Uniform Classification code occurring within the police jurisdiction, whether they became known to the police through reports of police officers, citizens, prosecuting or court officials, or otherwise. They were confined to the following group of seven classes of grave offenses, historically those offenses most often and most completely reported to the police: felonious homicide, including murder and nonnegligent manslaughter, and manslaughter by negligence, rape, robbery, aggravated assault, burglary -- breaking and entering, and larceny -- theft (including thefts $50 and over, and thefts under $50, and auto theft). The figures also included the number of attempted crimes in the designated classes excepting attempted murders classed as aggravated assaults. In other words, an attempted burglary or robbery, for example, was reported in the same manner as if the crimes had been completed. "Offenses known to the police" included, therefore, all of the above offenses, including attempts, which were reported by the police departments and not merely arrests or cleared cases.

  11. d

    Index, Violent, Property, and Firearm Rates By County: Beginning 1990

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York (2025). Index, Violent, Property, and Firearm Rates By County: Beginning 1990 [Dataset]. https://catalog.data.gov/dataset/index-violent-property-and-firearm-rates-by-county-beginning-1990
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    State of New York
    Description

    The Division of Criminal Justice Services (DCJS) collects crime reports from more than 500 New York State police and sheriffs’ departments. DCJS compiles these reports as New York’s official crime statistics and submits them to the FBI under the National Uniform Crime Reporting (UCR) Program. UCR uses standard offense definitions to count crime in localities across America regardless of variations in crime laws from state to state. In New York State, law enforcement agencies use the UCR system to report their monthly crime totals to DCJS. The UCR reporting system collects information on seven crimes classified as Index offenses which are most commonly used to gauge overall crime volume. These include the violent crimes of murder/non-negligent manslaughter, forcible rape, robbery, and aggravated assault; and the property crimes of burglary, larceny, and motor vehicle theft. Firearm counts are derived from taking the number of violent crimes which involve a firearm. Population data are provided every year by the FBI, based on US Census information. Police agencies may experience reporting problems that preclude accurate or complete reporting. The counts represent only crimes reported to the police but not total crimes that occurred. DCJS posts preliminary data in the spring and final data in the fall.

  12. National Crime Victimization Survey, Concatenated File, [United States],...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). National Crime Victimization Survey, Concatenated File, [United States], 1992-2018 [Dataset]. https://catalog.data.gov/dataset/national-crime-victimization-survey-concatenated-file-united-states-1992-2018-3904f
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Area covered
    United States
    Description

    The National Crime Victimization Survey (NCVS), previously called the National Crime Survey (NCS), has been collecting data on personal and household victimization through an ongoing survey of a nationally-representative sample of residential addresses since 1973. The NCVS was designed with four primary objectives: (1) to develop detailed information about the victims and consequences of crime, (2) to estimate the number and types of crimes not reported to the police, (3) to provide uniform measures of selected types of crimes, and (4) to permit comparisons over time and types of areas. Beginning in 1992, the survey categorizes crimes as "personal" or "property." Personal crimes include rape and sexual assault, robbery, aggravated and simple assault, and purse-snatching/pocket-picking, while property crimes include burglary, theft, motor vehicle theft, and vandalism. Each respondent is asked a series of screen questions designed to determine whether she or he was victimized during the six-month period preceding the first day of the month of the interview. A "household respondent" is also asked to report on crimes against the household as a whole (e.g., burglary, motor vehicle theft). The data include type of crime, month, time, and location of the crime, relationship between victim and offender, characteristics of the offender, self-protective actions taken by the victim during the incident and results of those actions, consequences of the victimization, type of property lost, whether the crime was reported to police and reasons for reporting or not reporting, and offender use of weapons, drugs, and alcohol. Basic demographic information such as age, race, gender, and income is also collected, to enable analysis of crime by various subpopulations. This dataset represents the concatenated version of the NCVS on a collection year basis for 1992-2018. A collection year contains records from interviews conducted in the 12 months of the given year. Under the collection year format, victimizations are counted in the year the interview is conducted, regardless of the year when the crime incident occurred. For additional information on the dataset, please see the documentation for the data from the most current year of the NCVS, ICPSR Study 37297.

  13. d

    Hate Crimes 2017-2025

    • catalog.data.gov
    • datahub.austintexas.gov
    • +1more
    Updated May 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Hate Crimes 2017-2025 [Dataset]. https://catalog.data.gov/dataset/hate-crimes-2024
    Explore at:
    Dataset updated
    May 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    A dataset of crimes that occurred in the designated time period that are being investigated as hate crimes. In APD's opinion these cases have met the FBI's definition of a hate crime, as well as the State's and Federal Law's definition of a hate crime. The ultimate decision to prosecute lies with the appropriate County District Attorney. AUSTIN POLICE DEPARTMENT DATA DISCLAIMER 1. The data provided are for informational use only and may differ from official APD crime data. 2. APD’s crime database is continuously updated, so reports run at different times may produce different results. Care should be taken when comparing against other reports as different data collection methods and different data sources may have been used. 3. The Austin Police Department does not assume any liability for any decision made or action taken or not taken by the recipient in reliance upon any information or data provided. In APD's opinion these cases have met the FBI's definition as well as the State's definition and Federal hate crime law of a hate crime and are being investigated as such. The ultimate decision to prosecute lies with the appropriate County District Attorney.

  14. Data from: Intercity Variation in Youth Homicide, Robbery, and Assault,...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Intercity Variation in Youth Homicide, Robbery, and Assault, 1984-2006 [United States] [Dataset]. https://catalog.data.gov/dataset/intercity-variation-in-youth-homicide-robbery-and-assault-1984-2006-united-states-7850a
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    The research team collected data on homicide, robbery, and assault offending from 1984-2006 for youth 13 to 24 years of age in 91 of the 100 largest cities in the United States (based on the 1980 Census) from various existing data sources. Data on youth homicide perpetration were acquired from the Supplementary Homicide Reports (SHR) and data on nonlethal youth violence (robbery and assault) were obtained from the Uniform Crime Reports (UCR). Annual homicide, robbery, and assault arrest rates per 100,000 age-specific populations (i.e., 13 to 17 and 18 to 24 year olds) were calculated by year for each city in the study. Data on city characteristics were derived from several sources including the County and City Data Books, SHR, and the Vital Statistics Multiple Cause of Death File. The research team constructed a dataset representing lethal and nonlethal offending at the city level for 91 cities over the 23-year period from 1984 to 2006, resulting in 2,093 city year observations.

  15. C

    bridgeport crime by longitude/latitude location

    • data.cityofchicago.org
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2025). bridgeport crime by longitude/latitude location [Dataset]. https://data.cityofchicago.org/Public-Safety/bridgeport-crime-by-longitude-latitude-location/srg9-gsb8
    Explore at:
    application/rssxml, tsv, xml, application/rdfxml, csv, kml, kmz, application/geo+jsonAvailable download formats
    Dataset updated
    Jun 7, 2025
    Authors
    Chicago Police Department
    Area covered
    Bridgeport
    Description

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e

  16. h

    ucf_crime

    • huggingface.co
    Updated Jul 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MyungHoonJin (2023). ucf_crime [Dataset]. https://huggingface.co/datasets/jinmang2/ucf_crime
    Explore at:
    Dataset updated
    Jul 3, 2023
    Authors
    MyungHoonJin
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Description

    Real-world Anomaly Detection in Surveillance Videos

    Surveillance videos are able to capture a variety of realistic anomalies. In this paper, we propose to learn anomalies by exploiting both normal and anomalous videos. To avoid annotating the anomalous segments or clips in training videos, which is very time consuming, we propose to learn anomaly through the deep multiple instance ranking framework by leveraging weakly labeled training videos, i.e. the training labels (anomalous or normal) are at video-level instead of clip-level. In our approach, we consider normal and anomalous videos as bags and video segments as instances in multiple instance learning (MIL), and automatically learn a deep anomaly ranking model that predicts high anomaly scores for anomalous video segments. Furthermore, we introduce sparsity and temporal smoothness constraints in the ranking loss function to better localize anomaly during training. We also introduce a new large-scale first of its kind dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities. This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities. Our experimental results show that our MIL method for anomaly detection achieves significant improvement on anomaly detection performance as compared to the state-of-the-art approaches. We provide the results of several recent deep learning baselines on anomalous activity recognition. The low recognition performance of these baselines reveals that our dataset is very challenging and opens more opportunities for future work.

    Problem & Motivation

    One critical task in video surveillance is detecting anomalous events such as traffic accidents, crimes or illegal activities. Generally, anomalous events rarely occur as compared to normal activities. Therefore, to alleviate the waste of labor and time, developing intelligent computer vision algorithms for automatic video anomaly detection is a pressing need. The goal of a practical anomaly detection system is to timely signal an activity that deviates normal patterns and identify the time window of the occurring anomaly. Therefore, anomaly detection can be considered as coarse level video understanding, which filters out anomalies from normal patterns. Once an anomaly is detected, it can further be categorized into one of the specific activities using classification techniques. In this work, we propose an anomaly detection algorithm using weakly labeled training videos. That is we only know the video-level labels, i.e. a video is normal or contains anomaly somewhere, but we do not know where. This is intriguing because we can easily annotate a large number of videos by only assigning video-level labels. To formulate a weakly-supervised learning approach, we resort to multiple instance learning. Specifically, we propose to learn anomaly through a deep MIL framework by treating normal and anomalous surveillance videos as bags and short segments/clips of each video as instances in a bag. Based on training videos, we automatically learn an anomaly ranking model that predicts high anomaly scores for anomalous segments in a video. During testing, a longuntrimmed video is divided into segments and fed into our deep network which assigns anomaly score for each video segment such that an anomaly can be detected.

    Method

    Our proposed approach (summarized in Figure 1) begins with dividing surveillance videos into a fixed number of segments during training. These segments make instances in a bag. Using both positive (anomalous) and negative (normal) bags, we train the anomaly detection model using the proposed deep MIL ranking loss. https://www.crcv.ucf.edu/projects/real-world/method.png

    UCF-Crime Dataset

    We construct a new large-scale dataset, called UCF-Crime, to evaluate our method. It consists of long untrimmed surveillance videos which cover 13 realworld anomalies, including Abuse, Arrest, Arson, Assault, Road Accident, Burglary, Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism. These anomalies are selected because they have a significant impact on public safety. We compare our dataset with previous anomaly detection datasets in Table 1. For more details about the UCF-Crime dataset, please refer to our paper. A short description of each anomalous event is given below. Abuse: This event contains videos which show bad, cruel or violent behavior against children, old people, animals, and women. Burglary: This event contains videos that show people (thieves) entering into a building or house with the intention to commit theft. It does not include use of force against people. Robbery: This event contains videos showing thieves taking money unlawfully by force or threat of force. These videos do not include shootings. Stealing: This event contains videos showing people taking property or money without permission. They do not include shoplifting. Shooting: This event contains videos showing act of shooting someone with a gun. Shoplifting: This event contains videos showing people stealing goods from a shop while posing as a shopper. Assault: This event contains videos showing a sudden or violent physical attack on someone. Note that in these videos the person who is assaulted does not fight back. Fighting: This event contains videos displaying two are more people attacking one another. Arson: This event contains videos showing people deliberately setting fire to property. Explosion: This event contains videos showing destructive event of something blowing apart. This event does not include videos where a person intentionally sets a fire or sets off an explosion. Arrest: This event contains videos showing police arresting individuals. Road Accident: This event contains videos showing traffic accidents involving vehicles, pedestrians or cyclists. Vandalism: This event contains videos showing action involving deliberate destruction of or damage to public or private property. The term includes property damage, such as graffiti and defacement directed towards any property without permission of the owner. Normal Event: This event contains videos where no crime occurred. These videos include both indoor (such as a shopping mall) and outdoor scenes as well as day and night-time scenes. https://www.crcv.ucf.edu/projects/real-world/dataset_table.png https://www.crcv.ucf.edu/projects/real-world/method.png

  17. U.S. crime rate trend perception 1990-2024

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. crime rate trend perception 1990-2024 [Dataset]. https://www.statista.com/statistics/205525/public-perception-of-trend-in-crime-problem-in-the-usa/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, about 64 percent of Americans felt there is more crime now in the United States than there was a year ago. A further 29 percent of survey respondents said that there was less crime in the U.S. in 2024 than there was the year previous.

  18. a

    ZIP Code

    • columbus.hub.arcgis.com
    Updated Oct 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Columbus Maps & Apps (2019). ZIP Code [Dataset]. https://columbus.hub.arcgis.com/datasets/usa-crime/data?layer=47
    Explore at:
    Dataset updated
    Oct 24, 2019
    Dataset authored and provided by
    City of Columbus Maps & Apps
    Area covered
    Description

    Esri's Crime Indexes data incorporates information from the AGS national CrimeRisk database that is based on an extensive analysis of several years of crime incidents reported by most US law enforcement jurisdictions. The Crime Indexes database includes standardized indexes for a range of serious crimes against both persons and property. The data vintage is 2019. All attributes are available at the following geography levels: State, County, Tract, Block Group, ZIP Code, Place, CBSA and DMA. Attributes include total crime index, personal crime index, and other indexes for serious crimes. To view ArcGIS Online items using this service, including the terms of use, visit http://goto.arcgisonline.com/demographics5/USA_Crime.

  19. O

    Crime Data

    • data.fortworthtexas.gov
    application/rdfxml +5
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Fort Worth (2025). Crime Data [Dataset]. https://data.fortworthtexas.gov/Public-Safety/Crime-Data/k6ic-7kp7
    Explore at:
    csv, json, tsv, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    City of Fort Worth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data comes from the police department and includes crime data sorted by offense. To respect the privacy of juvenile offenses and witnesses the data has been generalized to the hundred block of the event. Cases involving juvenile related data has been removed. The data is updated weekly.

  20. Number of homicide victims, by method used to commit the homicide

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +2more
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Number of homicide victims, by method used to commit the homicide [Dataset]. http://doi.org/10.25318/3510006901-eng
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of homicide victims, by method used to commit the homicide (total methods used; shooting; stabbing; beating; strangulation; fire (burns or suffocation); other methods used; methods used unknown), Canada, 1974 to 2023.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Reported violent crime rate in the U.S. 1990-2023 [Dataset]. https://www.statista.com/statistics/191219/reported-violent-crime-rate-in-the-usa-since-1990/
Organization logo

Reported violent crime rate in the U.S. 1990-2023

Explore at:
27 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 14, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.

Search
Clear search
Close search
Google apps
Main menu