46 datasets found
  1. T

    United States Food Inflation

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Food Inflation [Dataset]. https://tradingeconomics.com/united-states/food-inflation
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1914 - May 31, 2025
    Area covered
    United States
    Description

    Cost of food in the United States increased 2.90 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. T

    Canada Food Inflation

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Food Inflation [Dataset]. https://tradingeconomics.com/canada/food-inflation
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1951 - May 31, 2025
    Area covered
    Canada
    Description

    Cost of food in Canada increased 3.40 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Canada Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. T

    World Food Price Index

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). World Food Price Index [Dataset]. https://tradingeconomics.com/world/food-price-index
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1990 - Jun 30, 2025
    Area covered
    World, World
    Description

    Food Price Index in World increased to 128 Index Points in June from 127.30 Index Points in May of 2025. This dataset includes a chart with historical data for World Food Price Index.

  4. Monthly average retail prices for selected products

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Monthly average retail prices for selected products [Dataset]. http://doi.org/10.25318/1810024501-eng
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Monthly average retail prices for selected products, for Canada and provinces. Prices are presented for the current month and the previous four months. Prices are based on transaction data from Canadian retailers, and are presented in Canadian current dollars.

  5. T

    China Food Inflation

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, China Food Inflation [Dataset]. https://tradingeconomics.com/china/food-inflation
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1993 - Jun 30, 2025
    Area covered
    China
    Description

    Cost of food in China decreased 0.30 percent in June of 2025 over the same month in the previous year. This dataset provides - China Food Inflation - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. T

    Netherlands Food Inflation

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Netherlands Food Inflation [Dataset]. https://tradingeconomics.com/netherlands/food-inflation
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1997 - Jun 30, 2025
    Area covered
    Netherlands
    Description

    Cost of food in Netherlands increased 4.40 percent in June of 2025 over the same month in the previous year. This dataset provides - Netherlands Food Inflation - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. w

    World Food Security Outlook - World

    • microdata.worldbank.org
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bo Pieter Johannes Andree (2025). World Food Security Outlook - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/6103
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Bo Pieter Johannes Andree
    Time period covered
    1999 - 2030
    Area covered
    World, World
    Description

    Abstract

    Key components of the WFSO database cover the prevalence of severe food insecurity, including estimates for countries lacking official data, population sizes of the severely food insecure, and required safety net financing. Data is presented in a user-friendly format.

    WFSO data primarily relies on hunger and malnutrition data from the State of Food Security and Nutrition in the World (SOFI) report, led by the Food and agriculture Organization (FAO) in collaboration with multiple UN agencies. WFSO complements SOFI data by providing estimates for unreported countries. Historical estimates are produced with a machine learning model leveraging World Development Indicators (WDI) for global coverage.

    Financing needs for safety nets are calculated similarly to past approaches by the International Development Association (IDA) to assess food insecurity response needs (IDA (2020) and IDA (2021)). Preliminary estimates and projections rely on the same model and incorporate International Monetary Fund (IMF)'s World Economic Outlook (WEO) growth and inflation forecasts. WEO data reflects the IMF's expert analysis from various sources, including government agencies, central banks, and international organizations.

    Minor gaps in WDI data inflation data are replaced with unofficial WEO estimates. Minor inflation data gaps not covered by both, are replaced with unofficial inflation estimates from the World Bank's Real Time Food Prices (RTFP) data.

    The WFSO is updated three times a year, coinciding with IMF's WEO and SOFI releases. It provides food security projections that align with economic forecasts, aiding policymakers in integrating food security into economic planning.

    The WFSO database serves various purposes, aiding World Bank economists and researchers in economic analysis, policy recommendations, and the assessment of global financing needs to address food insecurity.

    Additionally, the WFSO enhances transparency in global food security data by tracking regional and global figures and breaking them down by individual countries. Historical estimates support research and long-term trend assessments, especially in the context of relating outlooks to past food security crises.

    Geographic coverage

    World

    Geographic coverage notes

    191 countries and territories mutually included by the World Bank's WDI and IMF's WEO databases. The country coverage is based on mutual inclusion in both the World Bank World Development Indicators database and the International Monetary Fund’s World Economic Outlook database. Some countries and territories may not be covered. Every attempt is made to provide comprehensive coverage. To produce complete historical predictions, missing data in the WDI are completed with unofficial data from the WEO and the World Bank's RTFP data when inflation data is not available in either database. Final gaps in the WDI and WEO are interpolated using a Kernel-based pattern-matching algorithm. See background documentation for equations.

    Analysis unit

    Country

    Kind of data

    Process-produced data [pro]

  8. Zomato country wise dataset

    • kaggle.com
    Updated May 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    abhishek (2023). Zomato country wise dataset [Dataset]. https://www.kaggle.com/datasets/iottech/zomato-country-wise-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    abhishek
    Description

    this is the Zomato dataset that has excellent features and is best for EDA and analysis for good practice you can use this dataset. below is the explanation of each feature. Restaurant ID 9551 non-null int64

    1 Restaurant Name --> name of the Restaurant 2 Country Code --> code of the country Each country has their unique code 3 City --> city in which the restaurant located 4 Address --> address of the restaurant
    5 Locality --> famous location around the restaurant
    6 Locality Verbose --> It is also similar to location 7 Longitude --> geographic coordinate that specifies the east-west position
    8 Latitude --> latitude is a coordinate that specifies the north-south position
    9 Cuisines --> name of Cuisines
    10 Average Cost for two --> cost if two-person book a table or order food 11 Currency --> transaction currency type
    12 Has Table booking --> Is table booking available
    13 Has Online delivery --> is the restaurant accept online delivery
    14 Is delivering now --> It tells at the current time the restaurant is taking orders 15 Switch to the order menu --> not a useable feature you can drop it 16 Price range --> price range of food and booking
    17 Aggregate rating --> The average rating based on multiple ratings or reviews
    18 Rating colour --> It is a feature that shows ratings using colour 19 Rating text --> rating text like good poor, best, not rated etc.
    20 Votes --> number of votes or ratings 21 Country --> name of the country in which the restaurant located 22 Restaurant ID --> the id of the restaurant provided by Zomato

  9. Consumer price inflation tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Consumer price inflation tables [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceinflation
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Measures of monthly UK inflation data including CPIH, CPI and RPI. These tables complement the consumer price inflation time series dataset.

  10. w

    Wholesale fruit and vegetable prices

    • gov.uk
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2025). Wholesale fruit and vegetable prices [Dataset]. https://www.gov.uk/government/statistical-data-sets/wholesale-fruit-and-vegetable-prices-weekly-average
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    GOV.UK
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    This series gives the average wholesale prices of selected home-grown horticultural produce in England and Wales. These are averages of the most usual prices charged by wholesalers for selected home-grown fruit, vegetables and cut flowers at the wholesale markets in Birmingham, Bristol, Manchester and a London Market (New Spitalfields or Western International). This publication is updated fortnightly.

    https://assets.publishing.service.gov.uk/media/686798f7dd1a7e01559e6d9c/fruitveg-currentweek-070725.ods">Current week prices

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">19.2 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/68679903e4184a43f9785c6d/fruitveg-weeklyhort-070725.ods">Weekly price time series, 2015 to 2025

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">389 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

  11. T

    India Food Inflation

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 3, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). India Food Inflation [Dataset]. https://tradingeconomics.com/india/food-inflation
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Aug 3, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - May 31, 2025
    Area covered
    India
    Description

    Cost of food in India increased 0.99 percent in May of 2025 over the same month in the previous year. This dataset provides - India Food Inflation - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  12. Consumer Price Index, annual average, not seasonally adjusted

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Jan 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Consumer Price Index, annual average, not seasonally adjusted [Dataset]. http://doi.org/10.25318/1810000501-eng
    Explore at:
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Annual indexes for major components and special aggregates of the Consumer Price Index (CPI), for Canada, provinces, Whitehorse, Yellowknife and Iqaluit. Data are presented for the last five years. The base year for the index is 2002=100.

  13. T

    Japan Food Inflation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Food Inflation [Dataset]. https://tradingeconomics.com/japan/food-inflation
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1971 - May 31, 2025
    Area covered
    Japan
    Description

    Cost of food in Japan increased 6.50 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Japan Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  14. T

    South Africa Food Inflation

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa Food Inflation [Dataset]. https://tradingeconomics.com/south-africa/food-inflation
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2009 - May 31, 2025
    Area covered
    South Africa
    Description

    Cost of food in South Africa increased 4.80 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - South Africa Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  15. Food Insecurity in Conflict Affected Regions in Nigeria 2017, Round 2 -...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Dec 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2019). Food Insecurity in Conflict Affected Regions in Nigeria 2017, Round 2 - Nigeria [Dataset]. https://datacatalog.ihsn.org/catalog/8396
    Explore at:
    Dataset updated
    Dec 5, 2019
    Dataset provided by
    World Bankhttp://worldbank.org/
    National Bureau of Statistics, Nigeria
    Time period covered
    2017
    Area covered
    Nigeria
    Description

    Abstract

    The purpose of this second round of data collection was to understand food insecurity in conflict affected regions. Armed conflict can have a detrimental effect on food security. This might be due to for example reduced agricultural production, or price increases due to malfunctioning markets. Food insecurity might be permanent, such that a household living below the poverty line has a constant struggle to acquire food from the market or produce food for their own use. In situations such as armed conflict, also better endowed households might be temporarily food insecure. In this report, we find that food insecurity is a major concern in all the three regions studied:

    • The mean household in all the three regions is “highly food insecure”.

    • North East of Nigeria is the most food insecure of the three regions.

    • Reducing meals or portion size is the most important coping strategy in all three regions.

    • Food prices are the most important source of food insecurity in all three regions.

    • A large majority of households rely on the market as the main source of food in all regions. Price concerns should therefore be taken very seriously by policy makers.

    • Households in all three regions do not report there being an inadequate supply of food in the market.

    Geographic coverage

    Zones, States and Local Government Areas (LGAs).

    Analysis unit

    • Individuals

    • Households

    • Communities

    Universe

    The survey covered all household members. The questionnaire was administered to only one respondent per household - most often a male household head.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    In the three conflict affected geographical zones comprising of 16 states of Nigeria, households from LGS's that had high conflict exposure were oversampled chosen for a pilot sample, conducted before the telephone surveys. These LGS's were chosen based on the following criteria: The oversampled LGS's needed to have over 10 conflict events during 2012-14 recorded in the Armed Conflict Location & Event Data Project (ACLED) database.

    The first round of the telephone survey (which took place after the pilot) first attempted to reach 742 households from the GHS panel, of which 529 could be reached and interviewed. The rest did not have phone numbers or functioning phone numbers (only 2.7 percent refused to answer). In order to increase the sample size to a level that was considered adequate for the survey, an additional 288 replacement households were included in the sample also from the GHS panel. Out of these replacement households 188 could be interviewed. Therefore altogether 1030 households were attempted to be reached, with a final sample size of 717 completed interviews.

    Conflict affected areas were oversampled in order to have a large enough sample of households that in fact experienced conflict events in order to shed light on the type of events that have happened. A random sample of the zones might have given too small sample of conflict affected households and therefore restricted the analysis of the various types of conflict events. Due to the oversampling however, the sample drawn was not representative at the level of the geographical zone, as is the case in the GHS. Therefore in the analysis we use sampling weights that adjust for the propensity of being in a conflict affected LGA in order to ensure that the sample is representative at the level of the geographical zone.

    During the second round of the survey 582 of the 717 households were re-interviewed on food security related issues (only the 717 were attempted to be reached). Of the 582 households 147 in the North East, 219 in North Central, and 216 in South South were interviewed. The attrition rates in our sample from round one to round two are hence 16 percent, 21 percent, and 19 percent for North East, North Central and South South, respectively. The attrition from the conflict survey round was mostly due to not being able to reach the respondents possibly due to non-functioning phone numbers. Only 3 percent of respondents refused to answer.

    Similar telephone-based surveys are being conducted in six countries in Sub-Saharan Africa under the World Bank project "Listening to Africa". As a comparison, a mobile phone survey in Tanzania (see Croke et al. 2012 for details), had a high drop-out rate between the very first rounds from 550 to 458 respondents, but very low attrition for the subsequent rounds for the 458 respondents, who could reliably be reached by a mobile phone. In light of this reference point and also considering the fact that the households interviewed live in conflict affected regions, our attrition rates seem to be within reasonable limits.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The questionnaire is divided into 9 sections including a household roster. Information on food insecurity (the coping strategy index, CSI), food and market access, water quality, employment, income, employment and assets were collected.

    Cleaning operations

    Data was analyzed using descriptive statistics in Stata 15. All data analysis was tracked using comprehensive do files to ensure reproducibility. All statistics presented in this report have been adjusted with probability weights, when possible, to be representative at the level of the geopolitical zone.

    Demographics for each geopolitical zone were analyzed based on the complete GHS 2016 dataset.

    Response rate

    The first round of the telephone survey (which took place after the pilot), first attempted to reach 742 households from the GHS panel, of which 529 could be reached and interviewed. The rest did not have phone numbers or functioning phone numbers (only 2.7 percent refused to answer). In order to increase the sample size to a level that was considered adequate for the survey, an additional 288 replacement households were included in the sample also from the GHS panel. Out of these replacement households, 188 could be interviewed. Therefore altogether 1030 households were attempted to be reached, with a final sample size of 717 completed interviews.

    The response rate is 96%.

    Data appraisal

    Limitations

    • Recall Bias

    In the pilot data collection, respondents were asked to report on conflict events that had taken place in their family and their community over the last six years. This extremely long recall period must be considered when drawing inferences from the data. People are likely to under-report less severe (and therefore less memorable) events, particularly those that happened to community members in larger communities. Respondents are also more likely to recall events that happened to family members than those that happened to community members. Other biases may also be at play - for example, those who have been most highly affected by conflict over the last six years may have moved to another community. These factors demonstrate the importance of implementing a regular data collection schedule, which would allow for more accurate data to be collected.

    • Sampling Bias

    The GHS is a panel survey taking place over multiple rounds through a period of time. Therefore, households that are more mobile or households that are nomadic are less likely to be represented in this sample. This may be particularly relevant in circumstances where nomadic groups are named as perpetrators of conflict events.

    • Power Dynamics There are some disadvantages to the phone system, and for this reason, it should be supplemented by additional types of data collection wherever possible. In a mobile phone survey, the respondent is the person who owns a mobile phone. In many areas, particularly those highly affected by poverty and those located in rural areas, only one family member owns a mobile phone. This is generally the household head, who is most likely male. Furthermore, in many of these communities, women are not allowed to have access to mobile phones and are forbidden from speaking to outsiders, which can prohibit mobile phone-based data collection.

    • Gender Dynamics The questionnaire was administered to only one respondent per household - most often a male household head. This means that crimes that carry a stigma, especially sexual violence, are less likely to be reported. In this dataset, no sexual assault was reported despite data collected elsewhere that indicate that rape was used as a weapon by Boko Haram and elsewhere. This also means that violence that affects members of the household with less power (such as women, children, and employees), is less likely to be reported. This may be particularly important when considering violence not related to ongoing external conflict, such as domestic violence.

  16. T

    United States Core Inflation Rate

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Core Inflation Rate [Dataset]. https://tradingeconomics.com/united-states/core-inflation-rate
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1957 - May 31, 2025
    Area covered
    United States
    Description

    Core consumer prices in the United States increased 2.80 percent in May of 2025 over the same month in the previous year. This dataset provides - United States Core Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. T

    Egypt Food Inflation

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Egypt Food Inflation [Dataset]. https://tradingeconomics.com/egypt/food-inflation
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 31, 2010 - Jun 30, 2025
    Area covered
    Egypt
    Description

    Cost of food in Egypt increased 6.90 percent in June of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Egypt Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. T

    Germany Food Inflation

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Food Inflation [Dataset]. https://tradingeconomics.com/germany/food-inflation
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Jun 30, 2025
    Area covered
    Germany
    Description

    Cost of food in Germany increased 2.70 percent in June of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Germany Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. T

    Indonesia Food Inflation

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Food Inflation [Dataset]. https://tradingeconomics.com/indonesia/food-inflation
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1997 - Jun 30, 2025
    Area covered
    Indonesia
    Description

    Cost of food in Indonesia increased 3.69 percent in January of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Indonesia Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  20. T

    Wheat - Price Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Wheat - Price Data [Dataset]. https://tradingeconomics.com/commodity/wheat
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Oct 22, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 21, 1977 - Jul 11, 2025
    Area covered
    World
    Description

    Wheat fell to 545.50 USd/Bu on July 11, 2025, down 1.62% from the previous day. Over the past month, Wheat's price has risen 3.61%, but it is still 0.95% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Wheat - values, historical data, forecasts and news - updated on July of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Food Inflation [Dataset]. https://tradingeconomics.com/united-states/food-inflation

United States Food Inflation

United States Food Inflation - Historical Dataset (1914-01-31/2025-05-31)

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
csv, excel, json, xmlAvailable download formats
Dataset updated
May 15, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1914 - May 31, 2025
Area covered
United States
Description

Cost of food in the United States increased 2.90 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Food Inflation - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu