100+ datasets found
  1. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Jun 18, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. T

    United States MBA 30-Yr Mortgage Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA 30-Yr Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/mortgage-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1990 - Jul 4, 2025
    Area covered
    United States
    Description

    Fixed 30-year mortgage rates in the United States averaged 6.77 percent in the week ending July 4 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Jul 10, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States increased to 6.72 percent in July 10 from 6.67 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  4. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

  5. Increase in Credit Card Fraud Rate In Mexico

    • kaggle.com
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    @data is life (2024). Increase in Credit Card Fraud Rate In Mexico [Dataset]. https://www.kaggle.com/datasets/faruqtaiwo/credit-card-fraud-increase-rate-in-mexico
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    @data is life
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Mexico
    Description

    Dataset

    This dataset was created by @data is life

    Released under Apache 2.0

    Contents

  6. T

    United States Personal Savings Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Personal Savings Rate [Dataset]. https://tradingeconomics.com/united-states/personal-savings
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Household Saving Rate in the United States decreased to 4.50 percent in May from 4.90 percent in April of 2025. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. AI Training Dataset Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI Training Dataset Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-ai-training-dataset-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Training Dataset Market Outlook



    The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.



    One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.



    Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.



    The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.



    As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.



    Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.



    Data Type Analysis



    The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.



    Image data is critical for computer vision application

  8. Housing price index using Crime Rate Data

    • kaggle.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SandeepRamesh (2017). Housing price index using Crime Rate Data [Dataset]. https://www.kaggle.com/sandeep04201988/housing-price-index-using-crime-rate-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SandeepRamesh
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    This dataset was actually made to check the correlations between a housing price index and its crime rate. Rise and fall of housing prices can be due to various factors with obvious reasons being the facilities of the house and its neighborhood. Think of a place like Detroit where there are hoodlums and you don't want to end up buying a house in the wrong place. This data set will serve as historical data for crime rate data and this in turn can be used to predict whether the housing price will rise or fall. Rise in housing price will suggest decrease in crime rate over the years and vice versa.

    Content

    The headers are self explanatory. index_nsa is the housing price non seasonal index.

    Acknowledgements

    Thank you to my team who helped in achieving this.

    Inspiration

    https://www.kaggle.com/marshallproject/crime-rates https://catalog.data.gov/dataset/fhfa-house-price-indexes-hpis Data was collected from these 2 sources and merged to get the resulting dataset.

  9. c

    The global AI Training Dataset Market size will be USD 2962.4 million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, The global AI Training Dataset Market size will be USD 2962.4 million in 2025. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-dataset-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global AI Training Dataset Market size will be USD 2962.4 million in 2025. It will expand at a compound annual growth rate (CAGR) of 28.60% from 2025 to 2033.

    North America held the major market share for more than 37% of the global revenue with a market size of USD 1096.09 million in 2025 and will grow at a compound annual growth rate (CAGR) of 26.4% from 2025 to 2033.
    Europe accounted for a market share of over 29% of the global revenue, with a market size of USD 859.10 million.
    APAC held a market share of around 24% of the global revenue with a market size of USD 710.98 million in 2025 and will grow at a compound annual growth rate (CAGR) of 30.6% from 2025 to 2033.
    South America has a market share of more than 3.8% of the global revenue, with a market size of USD 112.57 million in 2025 and will grow at a compound annual growth rate (CAGR) of 27.6% from 2025 to 2033.
    Middle East had a market share of around 4% of the global revenue and was estimated at a market size of USD 118.50 million in 2025 and will grow at a compound annual growth rate (CAGR) of 27.9% from 2025 to 2033.
    Africa had a market share of around 2.20% of the global revenue and was estimated at a market size of USD 65.17 million in 2025 and will grow at a compound annual growth rate (CAGR) of 28.3% from 2025 to 2033.
    Data Annotation category is the fastest growing segment of the AI Training Dataset Market
    

    Market Dynamics of AI Training Dataset Market

    Key Drivers for AI Training Dataset Market

    Government-Led Open Data Initiatives Fueling AI Training Dataset Market Growth

    In recent years, Government-initiated open data efforts have strongly driven the development of the AI Training Dataset Market through offering affordable, high-quality datasets that are vital in training sound AI models. For instance, the U.S. government's drive for openness and innovation can be seen through portals such as Data.gov, which provides an enormous collection of datasets from many industries, ranging from healthcare, finance, and transportation. Such datasets are basic building blocks in constructing AI applications and training models using real-world data. In the same way, the platform data.gov.uk, run by the U.K. government, offers ample datasets to aid AI research and development, creating an environment that is supportive of technological growth. By releasing such information into the public domain, governments not only enhance transparency but also encourage innovation in the AI industry, resulting in greater demand for training datasets and helping to drive the market's growth.

    India's IndiaAI Datasets Platform Accelerates AI Training Dataset Market Growth

    India's upcoming launch of the IndiaAI Datasets Platform in January 2025 is likely to greatly increase the AI Training Dataset Market. The project, which is part of the government's ?10,000 crore IndiaAI Mission, will establish an open-source repository similar to platforms such as HuggingFace to enable developers to create, train, and deploy AI models. The platform will collect datasets from central and state governments and private sector organizations to provide a wide and rich data pool. Through improved access to high-quality, non-personal data, the platform is filling an important requirement for high-quality datasets for training AI models, thus driving innovation and development in the AI industry. This public initiative reflects India's determination to become a global AI hub, offering the infrastructure required to facilitate startups, researchers, and businesses in creating cutting-edge AI solutions. The initiative not only simplifies data access but also creates a model for public-private partnerships in AI development.

    Restraint Factor for the AI Training Dataset Market

    Data Privacy Regulations Impeding AI Training Dataset Market Growth

    Strict data privacy laws are coming up as a major constraint in the AI Training Dataset Market since governments across the globe are establishing legislation to safeguard personal data. In the European Union, explicit consent for using personal data is required under the General Data Protection Regulation (GDPR), reducing the availability of datasets for training AI. Likewise, the data protection regulator in Brazil ordered Meta and others to stop the use of Brazilian personal data in training AI models due to dangers to individuals' funda...

  10. T

    Euro Area Interest Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Euro Area Interest Rate [Dataset]. https://tradingeconomics.com/euro-area/interest-rate
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 18, 1998 - Jun 5, 2025
    Area covered
    Euro Area
    Description

    The benchmark interest rate In the Euro Area was last recorded at 2.15 percent. This dataset provides - Euro Area Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. F

    Data from: Personal Saving Rate

    • fred.stlouisfed.org
    json
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Personal Saving Rate [Dataset]. https://fred.stlouisfed.org/series/PSAVERT
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 27, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Personal Saving Rate (PSAVERT) from Jan 1959 to May 2025 about savings, personal, rate, and USA.

  12. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 14, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  13. N

    Colorado Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Colorado Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Colorado from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/colorado-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Colorado
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Colorado population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Colorado across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of Colorado was 5.96 million, a 0.95% increase year-by-year from 2023. Previously, in 2023, Colorado population was 5.9 million, an increase of 0.86% compared to a population of 5.85 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Colorado increased by 1.63 million. In this period, the peak population was 5.96 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the Colorado is shown in this column.
    • Year on Year Change: This column displays the change in Colorado population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Colorado Population by Year. You can refer the same here

  14. o

    Data from: Dataset For: A Guide to Residential Energy Storage and Rooftop...

    • openenergyhub.ornl.gov
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Dataset For: A Guide to Residential Energy Storage and Rooftop Solar: State Net Metering Policies and Utility Rate Tariff Structures [Dataset]. https://openenergyhub.ornl.gov/explore/dataset/dataset-for-a-guide-to-residential-energy-storage-and-rooftop-solar-state-net-me/
    Explore at:
    Dataset updated
    Jun 12, 2024
    Description

    Note: Find data at source. ・ Federal and state decarbonization goals have led to numerous financial incentives and policies designed to increase access and adoption of renewable energy systems. In combination with the declining cost of both solar photovoltaic and battery energy storage systems and rising electric utility rates, residential renewable adoption has become more favorable than ever. However, not all states provide the same opportunity for cost recovery, and the complicated and changing policy and utility landscape can make it difficult for households to make an informed decision on whether to install a renewable system. This paper is intended to provide a guide to households considering renewable adoption by introducing relevant factors that influence renewable system performance and payback, summarized in a state lookup table for quick reference. Five states are chosen as case studies to perform economic optimizations based on net metering policy, utility rate structure, and average electric utility price; these states are selected to be representative of the possible combinations of factors to aid in the decision-making process for customers in all states. The results of this analysis highlight the dual importance of both state support for renewables and price signals, as the benefits of residential renewable systems are best realized in states with net metering policies facing the challenge of above-average electric utility rates.This dataset is intended to allow readers to reproduce and customize the analysis performed in this work to their benefit. Suggested modifications include: location, household load profile, rate tariff structure, and renewable energy system design.

  15. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  16. T

    Sweden Interest Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sweden Interest Rate [Dataset]. https://tradingeconomics.com/sweden/interest-rate
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 26, 1994 - Jun 18, 2025
    Area covered
    Sweden
    Description

    The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. N

    Oregon Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Oregon Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Oregon from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/oregon-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oregon
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Oregon population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Oregon across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of Oregon was 4.27 million, a 0.44% increase year-by-year from 2023. Previously, in 2023, Oregon population was 4.25 million, an increase of 0.15% compared to a population of 4.25 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Oregon increased by 841,632. In this period, the peak population was 4.27 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the Oregon is shown in this column.
    • Year on Year Change: This column displays the change in Oregon population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Oregon Population by Year. You can refer the same here

  18. N

    United States Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in United States from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/united-states-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of United States was 340.11 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, United States population was 336.81 million, an increase of 0.83% compared to a population of 334.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of United States increased by 57.95 million. In this period, the peak population was 340.11 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  19. g

    Strategic Measure Dollar Amount and Percentage Increase of Major Rates and...

    • gimi9.com
    Updated Sep 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Strategic Measure Dollar Amount and Percentage Increase of Major Rates and Fees | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_strategic-measure-dollar-amount-and-percentage-increase-of-major-rates-and-fees/
    Explore at:
    Dataset updated
    Sep 30, 2020
    Description

    In the Annual Budget Document, the Budget Office presents information about the annual cost of various city services/fees for the typical ratepayer. These services and fees include Austin Energy, Austin Water, Austin Resource Recovery, the Clean Community Fee, the Transportation User Fee, the Drainage Utility Fee, and the Property Tax Bill. This dataset supports the SD23 measure, "Dollar amount and percentage increase of major rates and fees for a range of customer types" (EOA.C.5.c). It contains the approved and amended rates for the typical ratepayer, the annual dollar change, and the annual percent change for each service/fee. This dataset can be used to help understand the cost of city services over time. View more details and insights related to this dataset on the story page: https://data.austintexas.gov/stories/s/Dollar-Amount-and-Percentage-Increase-of-Major-Rat/56uv-46qi/

  20. c

    Global Database Security Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Database Security Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/database-security-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Market Summary of Database Security Market:

    • The Global Database Security market size in 2023 was XX Million. The Database Security Industry's compound annual growth rate (CAGR) will be XX% from 2024 to 2031. • The database security industry is growing faster and is expected to expand at a faster rate due to these strict regulatory frameworks. Also, the increase in advanced technology for better protection of data is driving the growth of the Database security market. • The dominating segment is the software. It includes encryption, auditing, tokenization, data masking, and access control management. • Due to the increase in internet users, remote working demand, and risk of data breaches, the COVID-19 pandemic has had a beneficial effect on the market for data security solutions. • The database security market is dominated by North America in terms of both revenue and market share. This can be attributed to the region's concentration of significant industry participants and increasing technical advancements in their product line.

    Market Dynamics of Database Security Market:

    Key Drivers of Database Security Market:

    The Database Security Market is driven by the strict regulatory framework to address information security
    

    Regulatory frameworks can establish standards that developers and users must follow to guarantee a secure database. The market is growing as a result of increasingly stringent regulations enforced globally to protect sensitive data by governments and other relevant authorities in numerous nations. Currently, rules for data localization are in place in most of the countries. These have significant effects on how businesses interact with local regulations as well as their IT footprints, data governance, and data architectures. The general goals of localization regulations are to stop cybercrimes (such as identity theft), boost local economies, and possibly most importantly address growing privacy concerns. The desire of firms to utilize data for their commercial advantage is often the most contentious topic, with different governments arriving at different judgments about how to balance it. Data must be processed and stored within a specific nation or region to comply with geographic constraints on data export. For each of these, businesses must build a unique infrastructure, set of computing resources, and teams. For Instance, two sets of standard contractual agreements were adopted by the European Commission, one was meant for use between controllers and processors, and the other was meant for the transfer of personal data to third parties. They ensure a high level of data privacy for citizens by reflecting new standards under the General Data Privacy Regulation (GDPR) and taking the Court of Justice's Schrems II ruling into consideration. These new tools will provide European firms with greater legal stability and aid SMEs in particular to maintain compliance with secure data transfer standards while enabling unrestricted cross-border data movement. (Source: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2847) Furthermore, Federal Financial Institutions, the Sarbanes-Oxley Act (SOX), the Payment Card Industry Data Security Standard (PCI-DSS), Examination Council (FFIEC), etc are some strict regulatory measures for protection. So, the database security industry is growing faster and is expected to expand at a faster rate due to these strict regulatory frameworks.

    Key Restraints of Database Security Market

    Lack of skills and technological knowledge in database security market
    

    Inadequate information security may lead to disruptions in socially significant activities, inability to do business appropriately and efficiently, and loss of personal integrity protection. Nevertheless, obstacles including unclear career routes, out-of-date education, expensive certifications, and high levels of job stress deter people from choosing cybersecurity as a vocation. For Instance, As of May 2023, there were 40,000 cybersecurity job openings in India; however, a significant lack of skilled workers prevented 30% of these positions from being filled, according to TeamLease Digital, a division of TeamLease Services. The need for cybersecurity experts has outpaced supply, making it difficult for m...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate

United States Fed Funds Interest Rate

United States Fed Funds Interest Rate - Historical Dataset (1971-08-04/2025-06-18)

Explore at:
126 scholarly articles cite this dataset (View in Google Scholar)
xml, excel, json, csvAvailable download formats
Dataset updated
Jul 10, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Aug 4, 1971 - Jun 18, 2025
Area covered
United States
Description

The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu