The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.
The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international
https://cloud.google.com/bigquery/public-data/international-census
Dataset Source: www.census.gov
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What countries have the longest life expectancy?
Which countries have the largest proportion of their population under 25?
Which countries are seeing the largest net migration?
This metadata report documents tabular data sets consisting of items from the Census of Agriculture. These data are a subset of items from county-level data (including state totals) for the conterminous United States covering the census reporting years (every five years, with adjustments for 1978 and 1982) beginning with the 1950 Census of Agriculture and ending with the 2012 Census of Agriculture. Historical (1950-1997) data were extracted from digital files obtained through the Intra-university Consortium on Political and Social Research (ICPSR). More current (1997-2012) data were extracted from the National Agriculture Statistical Service (NASS) Census Query Tool for the census years of 1997, 2002, 2007, and 2012. Most census reports contain item values from the prior census for comparison. At times these values are updated or reweighted by the reporting agency; the Census Bureau prior to 1997 or NASS from 1997 on. Where available, the updated or reweighted data were used; otherwise, the original reported values were used. Changes in census item definitions and reporting as well as changes to county areas and names over the time span required a degree of manipulation on the data and county codes to make the data as comparable as possible over time. Not all of the census items are present for the entire 1950-2012 time span as certain items have been added since 1950 and when possible the items were derived from other items by subtracting or combining sub items. Specific changes and calculations are documented in the processing steps sections of this report. Other missing data occurs at the state and (or) county level due to census non-disclosure rules where small numbers of farms reporting an item have acres and (or) production values withheld to prevent identification of individual farms. In general, caution should be exercised when comparing current (2012) data with values reported in earlier censuses. While the 1974-2012 data are comparable, data prior to 1974 will have inflated farm counts and slightly inflated production amounts due to the differences in collection methods, primarily, the definition of a farm. Further discussion on comparability can be found the comparability section of the Supplemental Information element of this metadata report. Excluded from the tabular data are the District of Columbia, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the three county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. Data for independent cities of Virginia prior to 1959 have been included with their surrounding or adjacent county. Please refer to the Supplemental Information element for information on terminology, the Census of Agriculture, the Inter-university Consortium for Political and Social Research (ICPSR), table and variable structure, data comparability, all farms and economic class 1-5 farms, item calculations, increase of farms from 1974 to 1978, missing data and exclusion explanations, 1978 crop irregularities, pastureland irregularities, county alignment, definitions, and references. In addition to the metadata is an excel workbook (VariableKey.xlsx) with spreadsheets containing key spreadsheets for items and variables by category and a spreadsheet noting the presence or absence of entire variable data by year. Note: this dataset was updated on 2016-02-10 to populate omitted irrigation values for Miami-Dade County, Florida in 1997.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
This product provides tabular data from the U.S. Department of Agriculture (USDA) Census of Agriculture for selected items for the period 1950-2017 for counties in the conterminous United States. Data from 1950-2012 are taken from LaMotte (2015) and 2017 data are retrieved from the USDA QuickStats online tool. Data which are withheld in the Census of Agriculture are filled with estimates. The data include crop production values for 12 commodities (for example, corn in bushels), land use values for 7 land use types (for example, acres of total cropland), and 9 values for livestock types (for example, number of hogs and pigs). The data are largely intended as a 2017 update to the LaMotte dataset for items of research interest. LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Evanston: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Evanston median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Peoria population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Peoria. The dataset can be utilized to understand the population distribution of Peoria by age. For example, using this dataset, we can identify the largest age group in Peoria.
Key observations
The largest age group in Peoria, IL was for the group of age 25 to 29 years years with a population of 8,480 (7.56%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Peoria, IL was the 80 to 84 years years with a population of 1,950 (1.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Peoria Population by Age. You can refer the same here
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage.
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left in place to preserve the areas of the surrounding counties. Baltimore City, Maryland was combined with Baltimore County and the St. Louis City, Missouri, was combined with St. Louis County. La Paz County, Arizona was combined with Yuma County, Arizona and Cibola County, New Mexico was combined with Valencia County, New Mexico. Minor county border changes were at a level of precision beyond the scope of the data collection. A major objective of the census data tabulation is to maintain a reasonable degree of comparability of agricultural data from census to census. The tabular data collection is from 14 different censuses where definitions and data collection techniques may change over time and while the data are mostly comparable, a degree of caution should be exercised when using the data in analysis procedures. While the data are at a county-level resolution, a regional approach is more appropriate than a county-by-county analysis. The main purpose of this layer is to provide a base to generate a county raster for the allocation of agricultural census values to specific (agricultural) pixels. Vector format is provided so the raster pixel size can be user designated. References cited: LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016. National Historical Geographic Information System, Minnesota Population Center, 2004, Historic counties for the 2000 census of population and housing: Minneapolis, MN, University of Minnesota, accessed 03/18/2013 at http://nhgis.org
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Between 1944–1950, almost eight million expellees arrived in West Germany. We introduce a rich county-level database on the expellees’ socio-economic situation in post-war Germany. The database contains regionally disaggregated information on the number, origin, age, gender, religious denomination and labour force status of expellees. It also records corresponding information on the West German population as a whole, on the pre-war economic and religious structure of host and origin regions, and on war destructions in West Germany. The main data sources are the West German censuses of 1939, 1946, 1950 and 1961. Altogether, the database consists of 18 data tables (in xsls format). We have digitized the data as printed in the statistical sources, adding only an English translation of the table head (along with the original table head in German). Each data table has two tabs: The first tab (named “source”) lists the reference(s) of the printed source, the second (“data”) contains the actual data. Please consult the readme file for an overview of each data table’s content and the paper for additional information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in Germany was estimated at 83.6 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides the latest reported value for - Germany Population - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
This product provides tabular estimates of kilograms of nitrogen and phosphorus from a) fertilizer, and b) manure, for counties in the conterminous United States for the period 1950-2017. Data are generated for approximate five-year periods over the time, coinciding with U.S. Department of Agriculture Census of Agriculture census years. This data release also includes a model archive suitable for recreating the 2017 fertilizer estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has historical variables in decadal increments from 1950 to 2020 derived from historical observations of air temperature and precipitation. The variables included are:Annual number of days with a maximum temperature greater than or equal to 85°F Annual number of days with a maximum temperature greater than or equal to 86°F Annual number of days with a maximum temperature greater than or equal to 90°F Annual number of days with a maximum temperature greater than or equal to 95°F Annual number of days with a maximum temperature greater than or equal to 100°F Annual number of days with a maximum temperature greater than or equal to 105°F Annual number of days with a maximum temperature greater than or equal to 110°F Annual number of days with a maximum temperature greater than or equal to 115°F This layer uses data from the Livneh gridded precipitation and other meteorological variables for continental US, Mexico and southern Canada. Further processing by Esri is explained below.For each variable, there are mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available from the CRIS Website’s About the Data. Other climate variables are available from the CRIS Data page. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides historic values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesHistoric climate threshold values (e.g. Days Over 90°F) were calculated for each year from 1950 to 2020. To ensure the layer displays time correctly, under 'Map properties' set Time zone to 'Universal Coordinated Time (UTC)' and under 'Time slider options' set Time intervals to '1 Decade'.Data CitationLivneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950 - 2013. Scientific Data, 2, https://doi.org/10.1038/sdata.2015.42.Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
This dataset contains information on the number of deaths and age-adjusted death rates for the five leading causes of death in 1900, 1950, and 2000. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This layer has historical variables in decadal increments from 1950 to 2020 derived from historical observations of air temperature and precipitation. The variables included are:Annual average daily maximum temperature (°F) Annual average daily temperature (°F) Annual average daily minimum temperature (°F) Annual single highest maximum temperature (°F) Annual single lowest minimum temperature (°F) Annual average summertime (June, July, August) temperature (°F) This layer uses data from the NOAA Monthly U.S. Climate Gridded Dataset (nClimGrid). Further processing by Esri is explained below.For each variable, there are mean values for the defined respective geography: counties, tribal areas, HUC-8 watersheds. The process for deriving these summaries is available from the CRIS Website’s About the Data. Other climate variables are available from the CRIS Data page. Additional geographies, including Alaska, Hawai’i and Puerto Rico will be made available in the future.GeographiesThis layer provides historic values for three geographies: county, tribal area, and HUC-8 watersheds.County: based on the U.S. Census TIGER/Line 2022 distribution. Tribal areas: based on the U.S. Census American Indian/Alaska Native/Native Hawaiian Area dataset 2022 distribution. This dataset includes federal- and state-recognized statistical areas.HUC-8 watershed: based on the USGS Washed Boundary Dataset, part of the National Hydrography Database Plus High Resolution. Time RangesHistoric climate threshold values (e.g. Days Over 90°F) were calculated for each year from 1950 to 2020. To ensure the layer displays time correctly, under 'Map properties' set Time zone to 'Universal Coordinated Time (UTC)' and under 'Time slider options' set Time intervals to '1 Decade'.Data CitationVose, Russell S., Applequist, Scott, Squires, Mike, Durre, Imke, Menne, Matthew J., Williams, Claude N. Jr., Fenimore, Chris, Gleason, Karin, and Arndt, Derek (2014): NOAA Monthly U.S. Climate Gridded Dataset (nClimGrid), Version 1. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5SX6B56.Data ExportExporting this data into shapefiles, geodatabases, GeoJSON, etc is enabled.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Bainbridge Island: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bainbridge Island median household income by age. You can refer the same here
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data