46 datasets found
  1. k

    GDP per capita, PPP (current international $)

    • datasource.kapsarc.org
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GDP per capita, PPP (current international $) [Dataset]. https://datasource.kapsarc.org/explore/dataset/gdp-per-capita/
    Explore at:
    Dataset updated
    Oct 2, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore GDP per capita data and national accounts information with this comprehensive dataset. Gain insights into economic trends and comparisons across various countries. Click now to access the data!

    GDP, National Accounts, ITEM

    Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, ZimbabweFollow data.kapsarc.org for timely data to advance energy economics research..GDP per capita based on purchasing power parity (PPP). PPP GDP is gross domestic product converted to international dollars using purchasing power parity rates. An international dollar has the same purchasing power over GDP as the U.S. dollar has in the United States. GDP at purchaser's prices is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current international dollars based on the 2011 ICP round.

  2. Real GDP per capita

    • ec.europa.eu
    • db.nomics.world
    Updated May 13, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2018). Real GDP per capita [Dataset]. http://doi.org/10.2908/SDG_08_10
    Explore at:
    tsv, json, application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0, application/vnd.sdmx.data+csv;version=2.0.0Available download formats
    Dataset updated
    May 13, 2018
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2024
    Area covered
    Latvia, Netherlands, United Kingdom, Bulgaria, Türkiye, Romania, Italy, Malta, Hungary, Switzerland
    Description

    The indicator is calculated as the ratio of real GDP (GDP adjusted for inflation) to the average population of a specific year, where GDP is expressed in millions and population is expressed in thousands. Real GDP is published without decimals. GDP measures the value of the total final output of goods and services produced by an economy within a certain period of time. It includes goods and services that have markets (or which could have markets) and products which are produced by general government and non-profit institutions. It is a measure of economic activity and is commonly used as a proxy for the development in a country’s material living standards. However, it is not a complete measure of economic welfare. For example, GDP does not include most unpaid household work. Neither does GDP take account of negative effects of economic activity, like environmental degradation.

  3. T

    GDP PER CAPITA PPP by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA PPP by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita-ppp?continent=europe
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for GDP PER CAPITA PPP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. g

    Continuous national Gross Domestic Product (GDP) time series for 195...

    • dataservices.gfz-potsdam.de
    Updated 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tobias Geiger; Katja Frieler (2018). Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850-2005) harmonized with future projections according the Shared Socio-economic Pathways (2006-2100) [Dataset]. http://doi.org/10.5880/pik.2018.010
    Explore at:
    Dataset updated
    2018
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Tobias Geiger; Katja Frieler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Version history:This data are a new version of Geiger et al (2017, http:doi.org/10.5880/PIK.2017.003). Please use this updated version of this dataset which contains the following correction of errors in the original dataset: The linear interpolation in GDP per capita for Aruba (ABW) between observations in 2005 and SSP2 projections in 2010 was replaced by observed GDP per capita values for the years 2006-2009, as the SSP2 projection for Aruba turned out to be incorrect. As a result of this, the national GDP per capita and GDP timeseries for Aruba between 2006 and 2009 is different from the previous version. We here provide three different economic time series that amend or combine various existing time series for Gross Domestic Product (GDP), GDP per capita, and population to create consistent and continuous economic time series between 1850 and 2009 for up to 195 countries. All data, including the data description are included in a zip folder (2018-010_GDP_1850-2009_Data_v2.zip): (1) A continuous table of global income data (in 1990 Geary-Khamis $) based on the Maddison Project data base (MPD) for 160 individual countries and 3 groups of countries from 1850-2010: Maddison_Project_data_completed_1850-2010.csv. (2) A continuous table of global income data (in 2005 PPP $, PPP = purchasing power parity) for 195 countries based on a merged and harmonized dataset between MPD and Penn World Tables (PWT, version v8.1) from 1850-2009, and additionally extended using PWT v9.0 and World Development Indicators (WDI), that is consistent with future GDP per capita projections from the Shared Socioeconomic Pathways (SSPs): GDP-per-capita-national_PPP2005_SSP-harmonized_1850-2009_v2.csv. (3) A continuous table of global GDP data (in 2005 PPP $) for 195 countries from 1850-2009 based on the second income data set multiplied by country population data, again consistent with future SSP GDP projections: GDP-national_PPP2005_SSP-harmonized_1850-2009_v2.csv. These data are supplemented by a masking table indicating MPD original data and amended data based on current country definitions (Maddison_data_availability_masked_1850-2010.csv) and a file with PPP conversion factors used in this study (PPP_conversion_factors_PPP1990-PPP2005.csv). We use various interpolation and extrapolation methods to handle missing data and discuss the advantages and limitations of our methodology. Despite known shortcomings this data set aims to provide valuable input, e.g., for climate impact research in order to consistently analyze economic impacts from pre-industrial times to the distant future. More information about data sources and data format description is given in the data description file (2018-010_Data-Description-GDP_1850-2009_v2.pdf).

  5. Country Socioeconomic Status Scores: 1880-2010

    • kaggle.com
    Updated Apr 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sdorius (2017). Country Socioeconomic Status Scores: 1880-2010 [Dataset]. https://www.kaggle.com/sdorius/globses/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    sdorius
    Description

    This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the world’s people live in a country with a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.

    See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.

    VARIABLE DESCRIPTIONS: UNID: ISO numeric country code (used by the United Nations) WBID: ISO alpha country code (used by the World Bank) SES: Socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174) country: Short country name year: Survey year SES: Socioeconomic status score (1-99) for each of 174 countries gdppc: GDP per capita: Single time-series (imputed) yrseduc: Completed years of education in the adult (15+) population popshare: Total population shares

    DATA SOURCES: The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita: 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. Maddison population data in 000s; GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls. 2. World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm 3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/ Total Population 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
    2. United Nations Population Division. 2009.

  6. T

    GDP PER CAPITA by Country in ...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). GDP PER CAPITA by Country in ... [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=...
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  8. k

    World Competitiveness Ranking based on Criteria

    • datasource.kapsarc.org
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). World Competitiveness Ranking based on Criteria [Dataset]. https://datasource.kapsarc.org/explore/dataset/world-competitiveness-ranking-based-on-criteria-2016/
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.

    Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings

    Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela

    Follow data.kapsarc.org for timely data to advance energy economics research.

  9. d

    Global 15 x 15 Minute Grids of the Downscaled GDP Based on the SRES B2...

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global 15 x 15 Minute Grids of the Downscaled GDP Based on the SRES B2 Scenario, 1990 and 2025 [Dataset]. https://catalog.data.gov/dataset/global-15-x-15-minute-grids-of-the-downscaled-gdp-based-on-the-sres-b2-scenario-1990-and-2
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    SEDAC
    Description

    The Global 15x15 Minute Grids of the Downscaled GDP Based on the Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990 and 2025, are geospatial distributions of Gross Domestic Product (GDP) per Unit area (GDP densities). These global grids were generated using the Country-level GDP and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 data set, and CIESIN's Gridded Population of World, Version 2 (GPWv2) data set as the base map. First, the GDP per capita was developed at a country-level for 1990 and 2025. Then the gridded GDP was developed within each country by applying the GDP per capita to each grid cell of the GPW, under the assumption that the GDP per capita was uniform within a country. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  10. GDP per capita in PPS

    • db.nomics.world
    • data.europa.eu
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2025). GDP per capita in PPS [Dataset]. https://db.nomics.world/Eurostat/tec00114
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Eurostathttps://ec.europa.eu/eurostat
    Authors
    DBnomics
    Description

    Data from 1st of June 2022. For most recent GDP data, consult dataset nama_10_gdp. Gross domestic product (GDP) is a measure for the economic activity. It is defined as the value of all goods and services produced less the value of any goods or services used in their creation. The volume index of GDP per capita in Purchasing Power Standards (PPS) is expressed in relation to the European Union average set to equal 100. If the index of a country is higher than 100, this country's level of GDP per head is higher than the EU average and vice versa. Basic figures are expressed in PPS, i.e. a common currency that eliminates the differences in price levels between countries allowing meaningful volume comparisons of GDP between countries. Please note that the index, calculated from PPS figures and expressed with respect to EU27_2020 = 100, is intended for cross-country comparisons rather than for temporal comparisons."

  11. Country Socioeconomic Status Scores, Part II

    • kaggle.com
    zip
    Updated Jul 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sdorius (2017). Country Socioeconomic Status Scores, Part II [Dataset]. https://www.kaggle.com/sdorius/countryses
    Explore at:
    zip(17885 bytes)Available download formats
    Dataset updated
    Jul 14, 2017
    Authors
    sdorius
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the countries in this dataset have a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.

    See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.

    VARIABLE DESCRIPTIONS:

    unid: ISO numeric country code (used by the United Nations)

    wbid: ISO alpha country code (used by the World Bank)

    SES: Country socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174)

    country: Short country name

    year: Survey year

    gdppc: GDP per capita: Single time-series (imputed)

    yrseduc: Completed years of education in the adult (15+) population

    region5: Five category regional coding schema

    regionUN: United Nations regional coding schema

    DATA SOURCES:

    The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita:

    1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.

    2. World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm

    3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/

    4. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.

    5. United Nations Population Division. 2009.

  12. D

    Maddison Project Database 2023

    • dataverse.nl
    • b2find.eudat.eu
    Updated Apr 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jutta Bolt; Jan Luiten Van Zanden; Jutta Bolt; Jan Luiten Van Zanden (2024). Maddison Project Database 2023 [Dataset]. http://doi.org/10.34894/INZBF2
    Explore at:
    application/x-stata-14(10892389), xlsx(4903804)Available download formats
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    DataverseNL
    Authors
    Jutta Bolt; Jan Luiten Van Zanden; Jutta Bolt; Jan Luiten Van Zanden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Maddison Project Database 2023 release is the latest iteration of the Maddison Project Database (MPD). The dataset incorporates new time series data on GDP per capita and population for 169 countries and aggregate regions from 1 AD up to 2022. The original Maddison methodology has been refined. The data includes information on comparative economic growth and income levels over the very long run. The 2023 version of this database covers 169 countries and the period up to 2022. When using these data (for whatever purpose), please make the following reference: MPD version 2023: Bolt, Jutta and Jan Luiten van Zanden (2024). Maddison style estimates of the evolution of the world economy: A new 2023 update. Journal of Economic Surveys, 1–41. DOI: 10.1111/joes.12618 All original papers must be cited when: The data is shown in any graphical form Subsets of the full dataset that include less than a dozen (12) countries are used for statistical analysis or any other purposes A list of original papers can be found in the source sheet of the database. When neither 1) or 2) apply, then the MPD as a whole should be cited. More information about this release of the of the Maddison Project Database can be found on the associated page on the website of the Groningen Growth and Development Centre.

  13. World, Region, Country GDP/GDP per capita

    • kaggle.com
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Todor Mishinev (2022). World, Region, Country GDP/GDP per capita [Dataset]. https://www.kaggle.com/datasets/tmishinev/world-country-gdp-19602021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 9, 2022
    Dataset provided by
    Kaggle
    Authors
    Todor Mishinev
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Country GDP in US dollars for the period of 1960 to 2021. Not all countries have data values for the whole period. The NaN values are intentionally kept in the file.

    Columns:

    Country Name: Full name of the Country Country Code: 3 letter code year: int value of the year GDP_USD: total yearly GDP for the country in USD GDP_percapita_USD: GDP per capita in USD

    Data Source :

    World Bank national accounts data, and OECD National Accounts data files. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

  14. g

    GDP per capita (PPC) of the Basque Country and the countries of the European...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GDP per capita (PPC) of the Basque Country and the countries of the European Union (EU 27=100). | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_https-opendata-euskadi-eus-catalogo-pib-per-capita-ppc-pais-y-ano-eu-28-100-/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union, Basque Country
    Description

    There are several objectives faced by the operation on Structural Indicators.The first and generic is to achieve the production, with the highest possible degree of quality, of a battery of basic or context indicators, which serve or can serve as a reference.The second objective, would be to achieve methodological homogeneity and precision in the calculation in relation to other internal systems of indicators, and especially those defined by Eurostat, to rework and elaborate series that add the temporal perspective and design and implement dynamic file formats that allow the organisation and access to all information. Finally, the specific objective of the operation would focus on the coordination, management, verification and archiving of the indicators system.

  15. g

    Continuous national Gross Domestic Product (GDP) time series for 195...

    • dataservices.gfz-potsdam.de
    Updated May 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tobias Geiger; Katja Frieler (2017). Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850-2005) harmonized with future projections according the Shared Socio-economic Pathways (2006-2100) [Dataset]. http://doi.org/10.5880/pik.2017.003
    Explore at:
    Dataset updated
    May 31, 2017
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Tobias Geiger; Katja Frieler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    We here provide three different economic time series that amend or combine various existing time series for Gross Domestic Product (GDP), GDP per capita, and population to create consistent and continuous economic time series between 1850 and 2009 for up to 195 countries:

    (1) A continuous table of global income data (in 1990 Geary-Khamis $) based on the Maddison Project data base (MPD) for 160 individual countries and 3 groups of countries from 1850-2010: Maddison_Project_data_completed_1850-2010.csv.(2) A continuous table of global income data (in 2005 PPP $, PPP = purchasing power parity) for 195 countries based on a merged and harmonized dataset between MPD and Penn World Tables (PWT, version v8.1) from 1850-2009, and additionally extended using PWT v9.0 and World Development Indicators (WDI), that is consistent with future GDP per capita projections from the Shared Socioeconomic Pathways (SSPs): GDP-per-capita-national_PPP2005_SSP-harmonized_1850-2009.csv.(3) A continuous table of global GDP data (in 2005 PPP $) for 195 countries from 1850-2009 based on the second income data set multiplied by country population data, again consistent with future SSP GDP projections: GDP-national_PPP2005_SSP-harmonized_1850-2009.csv.

    These data are supplemented by a masking table indicating MPD original data and amended data based on current country definitions (Maddison_data_availability_masked_1850-2010.csv) and a file with PPP conversion factors used in this study (PPP_conversion_factors_PPP1990-PPP2005.csv).

    We use various interpolation and extrapolation methods to handle missing data and discuss the advantages and limitations of our methodology. Despite known shortcomings this data set aims to provide valuable input, e.g., for climate impact research in order to consistently analyze economic impacts from pre-industrial times to the distant future. More information about data sources and data format description is given in the data description file (Data-Description-GDP_1850-2009.pdf).

    Version history: Please use the updated version of this dataset which contains correction of errors in the original dataset. For a detailed description of the changes please consult the CHANGELOG included in the data description document of the new version.

  16. F

    Gross Domestic Product

    • fred.stlouisfed.org
    • trends.sourcemedium.com
    json
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Gross Domestic Product [Dataset]. https://fred.stlouisfed.org/series/GDP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    View economic output, reported as the nominal value of all new goods and services produced by labor and property located in the U.S.

  17. T

    GDP PER CAPITA by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=europe
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  18. Real gross domestic product (ROPI-adjusted for inflation) - Regions

    • db.nomics.world
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2025). Real gross domestic product (ROPI-adjusted for inflation) - Regions [Dataset]. https://db.nomics.world/OECD/DSD_REG_ECO_ROPI@DF_GDP_ROPI?q=inflation
    Explore at:
    Dataset updated
    Oct 2, 2025
    Authors
    DBnomics
    Description

    This dataset provides statistics on real gross domestic product (GDP) and real GDP per capita for subnational regions. Real values are deflation-adjusted using the Regional Producer Price Index (ROPI), where available.

    Data source and definition

    Regional gross domestic product data is collected at current prices, in millions of national currency from Eurostat (reg_eco10) for EU countries and via delegates of the OECD Working Party on Territorial Indicators (WPTI), as well as from national statistical offices' websites.

    To allow comparability over time and between countries, data at current prices are transformed into constant prices and purchasing power parity measures. Regional GDP per capita is calculated by dividing regional GDP by the average annual population of the region.

    See method and detailed data sources in Regions and Cities at a Glance 2024, Annex.

    Definition of regions

    Regions are subnational units below national boundaries. OECD countries have two regional levels: large regions (territorial level 2 or TL2) and small regions (territorial level 3 or TL3). The OECD regions are presented in the OECD Territorial grid (pdf) and in the OECD Territorial correspondence table (xlsx).

    Use of economic data on small regions

    When economic analyses are carried out at the TL3 level, it is advisable to aggregate data at the metropolitan region level when several TL3 regions are associated to the same metropolitan region. Metropolitan regions combine TL3 regions when 50% or more of the regional population live in a functionnal urban areas above 250 000 inhabitants. This approach corrects the distortions created by commuting. Correspondence between TL3 and metropolitan regions:(xlsx).

    Small regions (TL3) are categorized based on shared characteristics into regional typologies. See the economic indicators aggregated by territorial typology at country level on the access to City typology (link) and by urban-rural typology (link).

    Cite this dataset

    OECD Regions and Cities databases http://oe.cd/geostats

    Further information

    Contact: RegionStat@oecd.org

  19. A

    ‘Country Socioeconomic Status Scores: 1880-2010’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Country Socioeconomic Status Scores: 1880-2010’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-country-socioeconomic-status-scores-1880-2010-b9b8/703e72a5/?iid=006-425&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Country Socioeconomic Status Scores: 1880-2010’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sdorius/globses on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the world’s people live in a country with a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.

    See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.

    VARIABLE DESCRIPTIONS: UNID: ISO numeric country code (used by the United Nations) WBID: ISO alpha country code (used by the World Bank) SES: Socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174) country: Short country name year: Survey year SES: Socioeconomic status score (1-99) for each of 174 countries gdppc: GDP per capita: Single time-series (imputed) yrseduc: Completed years of education in the adult (15+) population popshare: Total population shares

    DATA SOURCES: The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita: 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. Maddison population data in 000s; GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls. 2. World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm 3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/ Total Population 1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
    2. United Nations Population Division. 2009.

    --- Original source retains full ownership of the source dataset ---

  20. e

    Primary Energy Demand and GDP per Capita for most Countries of the World,...

    • b2find.eudat.eu
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Primary Energy Demand and GDP per Capita for most Countries of the World, 1950-2014 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/7007119a-f78b-5907-8b40-1d59f538f6cc
    Explore at:
    Dataset updated
    May 3, 2023
    Area covered
    World
    Description

    The dataset reports annual estimates for primary energy per capita and GDP per capita for 185 countries for 1950 through 2014. The data allows investigating long-term joint evolution of economic activity and energy demand, which is important for both understanding the past energy needs of economic development, and forming useful baselines for scenario development, especially for integrated assessment modeling around climate change mitigation. Other commonly used datasets only go back to 1971 (International Energy Agency) for worldwide coverage and so extending the data back to 1950 allows analyzing a longer time period than before. The dataset also includes more individual country time series than IEA data thanks to data from the UN. 185 Countries as well as Czechoslovakia, East and West Pakistan, Soviet Union, Yugoslavia prior to their dissolution. Covers upward of 99% of global population after 1970. Data were downloaded from online repositories and then cleaned, harmonized and merged.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). GDP per capita, PPP (current international $) [Dataset]. https://datasource.kapsarc.org/explore/dataset/gdp-per-capita/

GDP per capita, PPP (current international $)

Explore at:
Dataset updated
Oct 2, 2025
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Explore GDP per capita data and national accounts information with this comprehensive dataset. Gain insights into economic trends and comparisons across various countries. Click now to access the data!

GDP, National Accounts, ITEM

Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, ZimbabweFollow data.kapsarc.org for timely data to advance energy economics research..GDP per capita based on purchasing power parity (PPP). PPP GDP is gross domestic product converted to international dollars using purchasing power parity rates. An international dollar has the same purchasing power over GDP as the U.S. dollar has in the United States. GDP at purchaser's prices is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current international dollars based on the 2011 ICP round.

Search
Clear search
Close search
Google apps
Main menu