100+ datasets found
  1. c

    Walmart products free dataset

    • crawlfeeds.com
    csv, zip
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Walmart products free dataset [Dataset]. https://crawlfeeds.com/datasets/walmart-products-free-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.

    It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.

  2. Open Data Portal Catalogue

    • open.canada.ca
    • datasets.ai
    • +1more
    csv, json, jsonl, png +2
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Treasury Board of Canada Secretariat (2025). Open Data Portal Catalogue [Dataset]. https://open.canada.ca/data/en/dataset/c4c5c7f1-bfa6-4ff6-b4a0-c164cb2060f7
    Explore at:
    csv, sqlite, json, png, jsonl, xlsxAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset provided by
    Treasury Board of Canada Secretariathttp://www.tbs-sct.gc.ca/
    Treasury Board of Canadahttps://www.canada.ca/en/treasury-board-secretariat/corporate/about-treasury-board.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The open data portal catalogue is a downloadable dataset containing some key metadata for the general datasets available on the Government of Canada's Open Data portal. Resource 1 is generated using the ckanapi tool (external link) Resources 2 - 8 are generated using the Flatterer (external link) utility. ###Description of resources: 1. Dataset is a JSON Lines (external link) file where the metadata of each Dataset/Open Information Record is one line of JSON. The file is compressed with GZip. The file is heavily nested and recommended for users familiar with working with nested JSON. 2. Catalogue is a XLSX workbook where the nested metadata of each Dataset/Open Information Record is flattened into worksheets for each type of metadata. 3. datasets metadata contains metadata at the dataset level. This is also referred to as the package in some CKAN documentation. This is the main table/worksheet in the SQLite database and XLSX output. 4. Resources Metadata contains the metadata for the resources contained within each dataset. 5. resource views metadata contains the metadata for the views applied to each resource, if a resource has a view configured. 6. datastore fields metadata contains the DataStore information for CSV datasets that have been loaded into the DataStore. This information is displayed in the Data Dictionary for DataStore enabled CSVs. 7. Data Package Fields contains a description of the fields available in each of the tables within the Catalogue, as well as the count of the number of records each table contains. 8. data package entity relation diagram Displays the title and format for column, in each table in the Data Package in the form of a ERD Diagram. The Data Package resource offers a text based version. 9. SQLite Database is a .db database, similar in structure to Catalogue. This can be queried with database or analytical software tools for doing analysis.

  3. u

    PDMX

    • cseweb.ucsd.edu
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, PDMX [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    We introduce PDMX: a Public Domain MusicXML dataset for symbolic music processing, including over 250k musical scores in MusicXML format. PDMX is the largest publicly available, copyright-free MusicXML dataset in existence. PDMX includes genre, tag, description, and popularity metadata for every file.

  4. LinkedIn Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2021). LinkedIn Datasets [Dataset]. https://brightdata.com/products/datasets/linkedin
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 17, 2021
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features

    Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.

    Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases

    Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.

    Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.

  5. About COVID-19 Public Datasets

    • console.cloud.google.com
    Updated Jun 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:BigQuery%20Public%20Datasets%20Program&inv=1&invt=Ab2YUw (2022). About COVID-19 Public Datasets [Dataset]. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-public-data-program
    Explore at:
    Dataset updated
    Jun 19, 2022
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Description

    In an effort to help combat COVID-19, we created a COVID-19 Public Datasets program to make data more accessible to researchers, data scientists and analysts. The program will host a repository of public datasets that relate to the COVID-19 crisis and make them free to access and analyze. These include datasets from the New York Times, European Centre for Disease Prevention and Control, Google, Global Health Data from the World Bank, and OpenStreetMap. Free hosting and queries of COVID datasets As with all data in the Google Cloud Public Datasets Program , Google pays for storage of datasets in the program. BigQuery also provides free queries over certain COVID-related datasets to support the response to COVID-19. Queries on COVID datasets will not count against the BigQuery sandbox free tier , where you can query up to 1TB free each month. Limitations and duration Queries of COVID data are free. If, during your analysis, you join COVID datasets with non-COVID datasets, the bytes processed in the non-COVID datasets will be counted against the free tier, then charged accordingly, to prevent abuse. Queries of COVID datasets will remain free until Sept 15, 2021. The contents of these datasets are provided to the public strictly for educational and research purposes only. We are not onboarding or managing PHI or PII data as part of the COVID-19 Public Dataset Program. Google has practices & policies in place to ensure that data is handled in accordance with widely recognized patient privacy and data security policies. See the list of all datasets included in the program

  6. Raw dataset

    • figshare.com
    application/x-rar
    Updated Jun 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ming yang (2022). Raw dataset [Dataset]. http://doi.org/10.6084/m9.figshare.20196941.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jun 30, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ming yang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Raw dataset 1.Datasets data link (GSE6919/ GSE46602/GSE70768): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

    1. Datasets data link (TCGA-PRAD): https://portal.gdc.cancer.gov/exploration?filters={"content":[{"content":{"field":"cases.primary_site","value":["pancreas"]},"op":"in"},{"content":
  7. Retail Transactions Dataset

    • kaggle.com
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

    Context:

    Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

    Inspiration:

    The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

    Dataset Information:

    The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

    • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
    • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
    • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
    • Product: A list of products purchased in the transaction. It includes the names of the products bought.
    • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
    • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
    • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
    • City: The city where the purchase took place. It indicates the location of the transaction.
    • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
    • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
    • Customer_Category: A category representing the customer's background or age group.
    • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
    • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

    Use Cases:

    • Market Basket Analysis: Discover associations between products and uncover buying patterns.
    • Customer Segmentation: Group customers based on purchasing behavior.
    • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
    • Retail Analytics: Analyze store performance and customer trends.

    Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

  8. P

    Meta-Dataset Dataset

    • paperswithcode.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eleni Triantafillou; Tyler Zhu; Vincent Dumoulin; Pascal Lamblin; Utku Evci; Kelvin Xu; Ross Goroshin; Carles Gelada; Kevin Swersky; Pierre-Antoine Manzagol; Hugo Larochelle, Meta-Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/meta-dataset
    Explore at:
    Authors
    Eleni Triantafillou; Tyler Zhu; Vincent Dumoulin; Pascal Lamblin; Utku Evci; Kelvin Xu; Ross Goroshin; Carles Gelada; Kevin Swersky; Pierre-Antoine Manzagol; Hugo Larochelle
    Description

    The Meta-Dataset benchmark is a large few-shot learning benchmark and consists of multiple datasets of different data distributions. It does not restrict few-shot tasks to have fixed ways and shots, thus representing a more realistic scenario. It consists of 10 datasets from diverse domains:

    ILSVRC-2012 (the ImageNet dataset, consisting of natural images with 1000 categories) Omniglot (hand-written characters, 1623 classes) Aircraft (dataset of aircraft images, 100 classes) CUB-200-2011 (dataset of Birds, 200 classes) Describable Textures (different kinds of texture images with 43 categories) Quick Draw (black and white sketches of 345 different categories) Fungi (a large dataset of mushrooms with 1500 categories) VGG Flower (dataset of flower images with 102 categories), Traffic Signs (German traffic sign images with 43 classes) MSCOCO (images collected from Flickr, 80 classes).

    All datasets except Traffic signs and MSCOCO have a training, validation and test split (proportioned roughly into 70%, 15%, 15%). The datasets Traffic Signs and MSCOCO are reserved for testing only.

  9. T

    Published Public Datasets

    • mydata.iowa.gov
    application/rdfxml +5
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Published Public Datasets [Dataset]. https://mydata.iowa.gov/dataset/Published-Public-Datasets/dwf6-q2v7
    Explore at:
    csv, application/rdfxml, tsv, application/rssxml, json, xmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Description

    This filtered view provides a list of datasets that have been published and where a public audience has been authorized. Not all public datasets may be federated to the public portal.

    This filtered view is used to identify such datasets that have been recently created or updated.

  10. Predictive Maintenance Dataset

    • kaggle.com
    Updated Nov 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Himanshu Agarwal (2022). Predictive Maintenance Dataset [Dataset]. https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 7, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Himanshu Agarwal
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A company has a fleet of devices transmitting daily sensor readings. They would like to create a predictive maintenance solution to proactively identify when maintenance should be performed. This approach promises cost savings over routine or time based preventive maintenance, because tasks are performed only when warranted.

    The task is to build a predictive model using machine learning to predict the probability of a device failure. When building this model, be sure to minimize false positives and false negatives. The column you are trying to Predict is called failure with binary value 0 for non-failure and 1 for failure.

  11. d

    2.02 Customer Service (detail)

    • catalog.data.gov
    • open.tempe.gov
    • +9more
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 2.02 Customer Service (detail) [Dataset]. https://catalog.data.gov/dataset/2-02-customer-service-detail-be51b
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    City of Tempe
    Description

    This dataset provides Customer Service Satisfaction results from the Annual Community Survey. The survey questions assess satisfaction with overall customer service for inpiduals who had contacted the city in the past year. For years where there are multiple questions related to overall customer service and treatment, the average of those responses are providing in the summary dataset and the values for each question are provided in the detailed dataset.For years 2010-2014, respondents were first asked "Have you contacted the city in the past year?". If they answered that they had contacted the city, then they were asked additional questions about their experience. The "number of respondents" field represents the number of people who answered yes to the contact question.Responses of "don't know" are not included in this dataset, but can be found in the dataset for the entire Community Survey. A survey was not completed for 2015 (99999 indicates no recorded data).Due to changes in the survey questions, this dataset was last updated in 2017 and may not be updated again. The performance measure dashboard is available at 2.02 Customer Service Satisfaction.Additional InformationSource: Community Attitude SurveyContact: Wydale HolmesContact E-Mail: Wydale_Holmes@tempe.govData Source Type: Excel and PDFPreparation Method: Extracted from Annual Community Survey resultsPublish Frequency: AnnualPublish Method: ManualData Dictionary

  12. d

    Data from: Business Owners

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Business Owners [Dataset]. https://catalog.data.gov/dataset/business-owners
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    This dataset contains the owner information for all the accounts listed in the Business License Dataset, and is sorted by Account Number. To identify the owner of a business, you will need the account number or legal name, which may be obtained from theBusiness Licenses dataset: https://data.cityofchicago.org/dataset/Business-Licenses/r5kz-chrr. Data Owner: Business Affairs & Consumer Protection. Time Period: 2002 to present. Frequency: Data is updated daily.

  13. u

    Pinterest Fashion Compatibility

    • cseweb.ucsd.edu
    • beta.data.urbandatacentre.ca
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Pinterest Fashion Compatibility [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    This dataset contains images (scenes) containing fashion products, which are labeled with bounding boxes and links to the corresponding products.

    Metadata includes

    • product IDs

    • bounding boxes

    Basic Statistics:

    • Scenes: 47,739

    • Products: 38,111

    • Scene-Product Pairs: 93,274

  14. h

    recognize-anything-dataset

    • huggingface.co
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinyu Huang (2023). recognize-anything-dataset [Dataset]. https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 15, 2023
    Authors
    Xinyu Huang
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Recognize Anything Dataset Card

      Dataset details
    

    Dataset type: These annotation files come from the Recognize Anything Model (RAM). RAM propose an automatic data engine to generate substantial image tags from image-text pairs. Dataset date: Recognize Anything Dataset was collected in April 2023, by an automatic data engine proposed by RAM. Paper or resources for more information: https://github.com/xinyu1205/recognize-anything Where to send questions or comments about the… See the full description on the dataset page: https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset.

  15. P

    RealNews Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Jan 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rowan Zellers; Ari Holtzman; Hannah Rashkin; Yonatan Bisk; Ali Farhadi; Franziska Roesner; Yejin Choi (2023). RealNews Dataset [Dataset]. https://paperswithcode.com/dataset/realnews
    Explore at:
    Dataset updated
    Jan 30, 2023
    Authors
    Rowan Zellers; Ari Holtzman; Hannah Rashkin; Yonatan Bisk; Ali Farhadi; Franziska Roesner; Yejin Choi
    Description

    RealNews is a large corpus of news articles from Common Crawl. Data is scraped from Common Crawl, limited to the 5000 news domains indexed by Google News. The authors used the Newspaper Python library to extract the body and metadata from each article. News from Common Crawl dumps from December 2016 through March 2019 were used as training data; articles published in April 2019 from the April 2019 dump were used for evaluation. After deduplication, RealNews is 120 gigabytes without compression.

  16. Amazon Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jul 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Amazon Dataset [Dataset]. https://brightdata.com/products/datasets/amazon
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more

  17. COVID-19 Search Trends symptoms dataset

    • console.cloud.google.com
    Updated Dec 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:BigQuery%20Public%20Datasets%20Program&inv=1&invt=Ab2UXQ (2019). COVID-19 Search Trends symptoms dataset [Dataset]. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-search-trends
    Explore at:
    Dataset updated
    Dec 17, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Description

    The COVID-19 Search Trends symptoms dataset shows aggregated, anonymized trends in Google searches for a broad set of health symptoms, signs, and conditions. The dataset provides a daily or weekly time series for each region showing the relative volume of searches for each symptom. This dataset is intended to help researchers to better understand the impact of COVID-19. It shouldn't be used for medical diagnostic, prognostic, or treatment purposes. It also isn't intended to be used for guidance on personal travel plans. To learn more about the dataset, how we generate it and preserve privacy, read the data documentation . To visualize the data, try exploring these interactive charts and map of symptom search trends . As of Dec. 15, 2020, the dataset was expanded to include trends for Australia, Ireland, New Zealand, Singapore, and the United Kingdom. This expanded data is available in new tables that provide data at country and two subregional levels. We will not be updating existing state/county tables going forward. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  18. Data from: Inventory of online public databases and repositories holding...

    • catalog.data.gov
    • s.cnmilf.com
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Inventory of online public databases and repositories holding agricultural data in 2017 [Dataset]. https://catalog.data.gov/dataset/inventory-of-online-public-databases-and-repositories-holding-agricultural-data-in-2017-d4c81
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt

  19. d

    Data from: Datasets for transcriptomic analyses of maize leaves in response...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Datasets for transcriptomic analyses of maize leaves in response to Asian corn borer feeding and/or jasmonic acid [Dataset]. https://catalog.data.gov/dataset/data-from-datasets-for-transcriptomic-analyses-of-maize-leaves-in-response-to-asian-corn-b-d9ac5
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Corn (Zea mays) is one of the most widely grown crops throughout the world. However, many corn fields develop pest problems such as corn borers every year that seriously affect its yield and quality. Corn's response to initial insect damage involves a variety of changes to the levels of defensive enzymes, toxins, and communicative volatiles. Such a dramatic change secondary metabolism necessitates the regulation of gene expression at the transcript level. This Data In Brief paper summarizes the datasets of the transcriptome of corn plants in response to corn stalk borers (Ostrinia furnacalis) and/or methyl jasmonate (MeJA). Altogether, 39, 636 genes were found to be differentially expressed. The sequencing data are available in the NCBI SRA database under accession number SRS965087. This dataset will provide more scientific and valuable information for future work such as the study of the functions of important genes or proteins and develop new insect-resistant maize varieties. Includes supplementary tables and data in fasta and GTF format. Resources in this dataset:Resource Title: Datasets for transcriptomic analyses of maize leaves in response to Asian corn borer feeding and/or jasmonic acid. File Name: Web Page, url: https://www.sciencedirect.com/science/article/pii/S2352340916301792 Data in Brief Article including supplemental data in fasta and GTF format.

  20. D

    Dataset Alerts - Open and Monitoring

    • datasf.org
    • data.sfgov.org
    • +1more
    application/rdfxml +5
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dataset Alerts - Open and Monitoring [Dataset]. https://datasf.org/opendata/
    Explore at:
    json, application/rssxml, csv, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A log of dataset alerts open, monitored or resolved on the open data portal. Alerts can include issues as well as deprecation or discontinuation notices.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Crawl Feeds (2025). Walmart products free dataset [Dataset]. https://crawlfeeds.com/datasets/walmart-products-free-dataset

Walmart products free dataset

Walmart products free dataset from Walmart.com

Explore at:
zip, csvAvailable download formats
Dataset updated
Apr 27, 2025
Dataset authored and provided by
Crawl Feeds
License

https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

Description

Discover the Walmart Products Free Dataset, featuring 2,000 records in CSV format. This dataset includes detailed information about various Walmart products, such as names, prices, categories, and descriptions.

It’s perfect for data analysis, e-commerce research, and machine learning projects. Download now and kickstart your insights with accurate, real-world data.

Search
Clear search
Close search
Google apps
Main menu