The Key Map Grid Index dataset contains rectangular features representing index pages within Montgomery County, Texas. Each index page is proportioned to fit a letter-sized map and is assigned a unique identifier for reference purposes. This dataset facilitates the organization and retrieval of key map grids, with 24 key map grids fitting within a single index page. The index pages are numbered sequentially, and the key map grids within each index page are lettered accordingly, excluding the letters "I" and "O" to avoid confusion with numbers. The Key Map Grid Index was created by the Houston Map Company, which covers multiple counties in the Houston metropolitan area including Harris, Fort Bend, Galveston, Brazoria, Liberty, Waller, and Montgomery Counties. More information can be found on the Houston Map Company's website at www.keymaps.com.Data Fields Included:Index Page ID: Unique identifier assigned to each index pageBoundary Polygon: Rectangle representing the proportionate index page
The Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot resolution 2006-2007 mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pksr_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pksr_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pksr_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pksr_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pksr_geomorphology_metadata.txt or pksr_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:20,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT).
Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers.
This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html.
The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system.
For use in Bioregional Assessment land classification analyses
NVIS Version 4.1
The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC).
Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files.
The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple).
Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete.
Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate:
Unclassified Forest
Other Open Woodlands
Mallee Open Woodlands and Sparse Mallee Shublands
(Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown.
As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources.
Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions.
Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0).
Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset.
November 2012 Corrections
Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012.
Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
To view and download tax plat maps, click on the DATA tab above. To find a map, select a column heading to sort the table by zone or section number. Or refine your search by the clicking the filter icon at the top of each column. To view or download the tax plat map, click on the URL under ViewMap next to the ZSP map number. Alternatively, use the online Parcel and Zoning Map to search for tax plat maps by address, tax map key (TMK), or using a map interface.
The gSSURGO dataset provides detailed soil survey mapping in raster format with ready-to-map attributes organized in statewide tiles for desktop GIS. gSSURGO is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS).
The gSSURGO data were prepared by merging the traditional vector-based SSURGO digital map data and tabular data into statewide extents, adding a statewide gridded map layer derived from the vector layer, and adding a new value-added look up table (valu) containing ready-to-map attributes. The gridded map layer is in an ArcGIS file geodatabase in raster format, thus it has the capacity to store significantly more data and greater spatial extents than the traditional SSURGO product. The raster map data have a 10-meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link the raster cells and polygons to attribute tables.
For more information, see the gSSURGO webpage: https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. James W. Sewall Company developed a complete GIS coverage for the park and revised the preliminary vegetation map classes to better match the results from the cluster analysis and NMS ordination. Polygons representing vegetation stands were digitized on-screen in ArcGIS 8.3, and later in ArcMap 9.1 and 9.2, using lines drawn on the acetate overlays, base layers of 1:8,000 CIR aerial photography, orthorectified photo composite image, and plot location and data. The minimum map unit used was 0.5 ha (1.24 ac). Stereo pairs were used to double check stand signatures during the digitizing process. Photo interpretation and polygon digitization extended outside the NPS boundary, especially where vegetation units were arbitrarily truncated by the boundary. Each polygon was attributed with the name of a vegetation map class or an Anderson Level II land use category based on plot data, field observations, aerial photography signatures, and topographic maps. Data fields identifying the USNVC association inclusions within the vegetation map class were attributed to the vegetation polygons in the shapefile. The GIS coverages and shapefiles were projected to Universal Transverse Mercator (UTM) Zone 19 North American Datum 1983 (NAD83). FGDC compliant metadata (FGDC 1998a) were created with the NPS-MP ESRI extension and included with the vegetation map shapefile. A photointerpretation key to the map classes for the 2006 draft vegetation map is included as Appendix A. The composite vegetation coverage was clipped to the NPS 2002 MIMA boundary shapefile for accuracy assessment (AA). After the 2006 vegetation map was completed, the thematic accuracy of this map was assessed.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. The dataset includes albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.Resources in this dataset:Resource Title: Multiscale climatological albedo look-up maps (LUMS).File Name: Web Page, url: https://app.globus.org/file-manager?origin_id=904c2108-90cf-11e8-9672-0a6d4e044368&origin_path=/LTS/ADCdatastorage/NAL/published/node35339/The albedo look-up maps (LUMs) were built on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions.The zipped file includes: readme.docx snow_covered_hierarchical.v3.tar snow_covered_LUM.v3.tar snow_free_hierarchical.v3.tar snow_free_LUM.v3.tarSCINet users: The .zip file can be accessed/retrieved with valid SCINet account at this location: /LTS/ADCdatastorage/NAL/published/node35339/See the SCINet File Transfer guide for more information on moving large files: https://scinet.usda.gov/guides/data/datatransferGlobus users: The files can also be accessed through Globus by following this data link. The user will need to log in to Globus in order to retrieve this data. User accounts are free of charge with several options for signing on. Instructions for creating an account are on the login page.
Jurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.
The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is Version 2 of the Depth of Regolith product of the Soil and Landscape Grid of Australia (produced 2015-06-01).
The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).
Attribute Definition: The regolith is the in situ and transported material overlying unweathered bedrock; Units: metres; Spatial prediction method: data mining using piecewise linear regression; Period (temporal coverage; approximately): 1900-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute:3; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): R^2 = 0.38; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. Lineage: The methodology consisted of the following steps: (i) drillhole data preparation, (ii) compilation and selection of the environmental covariate raster layers and (iii) model implementation and evaluation.
Drillhole data preparation: Drillhole data was sourced from the National Groundwater Information System (NGIS) database. This spatial database holds nationally consistent information about bores that were drilled as part of the Bore Construction Licensing Framework (http://www.bom.gov.au/water/groundwater/ngis/). The database contains 357,834 bore locations with associated lithology, bore construction and hydrostratigraphy records. This information was loaded into a relational database to facilitate analysis.
Regolith depth extraction: The first step was to recognise and extract the boundary between the regolith and bedrock within each drillhole record. This was done using a key word look-up table of bedrock or lithology related words from the record descriptions. 1,910 unique descriptors were discovered. Using this list of new standardised terms analysis of the drillholes was conducted, and the depth value associated with the word in the description that was unequivocally pointing to reaching fresh bedrock material was extracted from each record using a tool developed in C# code.
The second step of regolith depth extraction involved removal of drillhole bedrock depth records deemed necessary because of the “noisiness” in depth records resulting from inconsistencies we found in drilling and description standards indentified in the legacy database.
On completion of the filtering and removal of outliers the drillhole database used in the model comprised of 128,033 depth sites.
Selection and preparation of environmental covariates The environmental correlations style of DSM applies environmental covariate datasets to predict target variables, here regolith depth. Strongly performing environmental covariates operate as proxies for the factors that control regolith formation including climate, relief, parent material organisms and time.
Depth modelling was implemented using the PC-based R-statistical software (R Core Team, 2014), and relied on the R-Cubist package (Kuhn et al. 2013). To generate modelling uncertainty estimates, the following procedures were followed: (i) the random withholding of a subset comprising 20% of the whole depth record dataset for external validation; (ii) Bootstrap sampling 100 times of the remaining dataset to produce repeated model training datasets, each time. The Cubist model was then run repeated times to produce a unique rule set for each of these training sets. Repeated model runs using different training sets, a procedure referred to as bagging or bootstrap aggregating, is a machine learning ensemble procedure designed to improve the stability and accuracy of the model. The Cubist rule sets generated were then evaluated and applied spatially calculating a mean predicted value (i.e. the final map). The 5% and 95% confidence intervals were estimated for each grid cell (pixel) in the prediction dataset by combining the variance from the bootstrapping process and the variance of the model residuals. Version 2 differs from version 1, in that the modelling of depths was performed on the log scale to better conform to assumptions of normality used in calculating the confidence intervals. The method to estimate the confidence intervals was improved to better represent the full range of variability in the modelling process. (Wilford et al, in press)
Interagency Wildland Fire Perimeter History (IFPH) Overview This national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2024 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history (WFIGS pull for updates began 2022)USDA FS Regional Fire History Data (WFIGS pull for updates began 2024)BLM Fire Planning and Fuels (WFIGS pull for updates began 2020)National Park Service - Includes Prescribed Burns (WFIGS pull for updates began 2020)Fish and Wildlife Service (WFIGS pull for updates began 2024)Bureau of Indian Affairs (Incomplete, 2017-2018 from BIA, WFIGS pull for updates began 2020)CalFire FRAS - Includes Prescribed Burns (CALFIRE only source, non-fed fires)WFIGS - updates included since mid-2020, unless otherwise noted Data LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.Attributes This dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer maintained by IrWIN. (This unique identifier may NOT replace the GeometryID core attribute) FORID - Unique identifier assigned to each incident record in the Fire Occurence Data Records system. (This unique identifier may NOT replace the GeometryID core attribute) INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name. FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT). AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin. SOURCE - System/agency source of record from which the perimeter came. DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy. MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Other GIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9 UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001 LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456. UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMP COMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or Unknown GEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID). Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4,781 Records thru 2021), other federal sources for AK data removed. No RX data included.CA: GEOID = OBJECT ID of downloaded file geodatabase (8,480 Records, federal fires removed, includes RX. Significant cleanup occurred between 2023 and 2024 data pulls resulting in fewer perimeters).FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2,959 Records), includes RX.BIA: GEOID = "FireID" 2017/2018 data (382 records). No RX data included.NPS: GEOID = EVENT ID 15,237 records, includes RX. In 2024/2023 dataset was reduced by combining singlepart to multpart based on valid Irwin, FORID or Unique Fire IDs. RX data included.BLM: GEOID = GUID from BLM FPER (23,730 features). No RX data included.USFS: GEOID=GLOBALID from EDW records (48,569 features), includes RXWFIGS: GEOID=polySourceGlobalID (9724 records added or replaced agency record since mid-2020)Attempts to repair Unique Fire ID not made. Attempts to repair dates not made. Verified all IrWIN IDs and FODRIDs present via joins and cross checks to the respective dataset. Stripped leading and trailing spaces, fixed empty values to
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset of georeferenced 1917 Sanborn Fire Insurance maps of Knoxville TN, including individual sheets, a sheet index, a seamless mosaic, and a map key. Digital images of the data sheets were downloaded from the University of Tennessee Library https://digital.lib.utk.edu/collections/sanbornmapcollection. Multi-part sheets were clipped into pieces for georeferencing. Chris DeRolph georeferenced each sheet and piece, where possible. There were a few outlying images that were unable to be georeferenced due to lack of recognizable common features between the sheets and reference maps/imagery in the sheet vicinity. The sheet index shapefile includes a field with a hyperlink to the UTK library download page for the sheet. The seamless mosaic was created using the Mosaic to New Raster tool in ArcGIS Pro with all georeferenced sheets/pieces as inputs and the Minimum Mosaic Operator. No attempt was made prior to the mosaicking process to remove sheet numbers, scale bars, north arrows, overlapping labels/annotation, etc. Viewing individual sheets will provide the cleanest look at an area, while the seamless mosaic provides the most comprehensive view of the city at the time the maps were created.
The objective of this research was to collect new bathymetry for all of Florida Bay, digitize the historical shoreline and bathymetric data, compare previous data to modern data, and produce maps and digital grids of historical and modern bathymetry.
Detailed, high-resolution maps of Florida Bay mudbank elevations are needed to understand sediment dynamics and provide input into water quality and circulation models. The bathymetry of Florida Bay had not been systematically mapped in nearly 100 years, and some shallow areas of the bay have never been mapped. An accurate, modern bathymetric survey provides a baseline for assessing future sedimentation rates in the Bay, and a foundation for developing a sediment budget. Due to the complexity of the Bay and age of existing data, a current bathymetric grid (digitally derived from the survey) is critical for numerical models. Numerical circulation and sediment transport models being developed for the South Florida Ecosystem Restoration Program are being used to address water quality issues in Florida Bay. Application of these models is complicated due to the complex seafloor topography (basin/mudbank morphology) of the Bay. The only complete topography data set of the Bay is 100 years old. Consequently, an accurate, modern seafloor bathymetry map of the Bay is critical for numerical modeling research. A modern bathymetry data set will also permit a comparison to historical data in order to help access sedimentation rates within the Bay.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Timor-Leste land cover and change dataset covers an area of 14 931km2 and mapped with dichotomous (8 land cover classes)and modular (up to 32 land cover classes) levels based on FAO's Land Cover Classification System (LCCS). High-resolution optical satellite imagery were used to generate dense time-series data from which the thematic land cover and change maps were derived (LC: 2016, LCC: 2000, 2005, 2010). The maps were fully verified and validated by an independent team to achieve the Copernicus Global Land Monitoring Programme's strict data quality requirements. An independent validation dataset was also collected and it is shared here. The validation dataset contains 4413 verified land cover points based on the [up to] 32 modular level land cover classes. Furthermore, two predefined symbology (QGIS legend files) for the land cover and validation datasets based on FAO's LCCS is also shared here to ease the visualization of them (Dichotomous and Modular levels). Further details regarding the sites selection, mapping and validation procedures are described in the corresponding publication: Szantoi, Zoltan; Brink, Andreas; Lupi, Andrea (2021): An update and beyond: key landscapes for conservation land cover and change monitoring, thematic and validation datasets for the African, Caribbean and Pacific region (in review, Earth System Science Data).
Data format: vector (shapefile, polygon - LC/LCC dataset), vector (shapefile, point - validation dataset), Geographic Coordinate System (LC/LCC dataset): World Geodetic System 1984 (EPSG:4326) and its datum (EPSG:6326), Minimum mapping unit: 3ha for land cover and 0.5ha for land cover change Land cover/change dataset attributes: [map_codeA] - dichotomous level, [map_code} - modular level, [class_name] - corresponding modular class name. Validation dataset attributes (not all are present): [plaus200X] - corresponding class for the change map (i.e. 2000), modular level [plaus200Xr] - corresponding class for the change map (i.e. 2000), aggregated classes [plaus20XX] - corresponding class for the land cover map (i.e. 2016), modular level [plaus20XXr] - corresponding class for the land cover map (i.e. 2016), aggregated classes The naming of all attributes follow the same structure in all shapefiles - see Table 2 Dichotomous and Modular thematic land cover/use classes and in the "3.5 Validation dataset production" section in the corresponding publication.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This is Version 2 of the Australian Soil Depth of Regolith product of the Soil and Landscape Grid of Australia (produced 2015-06-01). The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attribute Definition: The regolith is the in situ and transported material overlying unweathered bedrock; Units: metres; Spatial prediction method: data mining using piecewise linear regression; Period (temporal coverage; approximately): 1900-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute:3; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 3.0 (CC By); Variance explained (cross-validation): R^2 = 0.38; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.
The methodology consisted of the following steps: (i) drillhole data preparation, (ii) compilation and selection of the environmental covariate raster layers and (iii) model implementation and evaluation. Drillhole data preparation: Drillhole data was sourced from the National Groundwater Information System (NGIS) database. This spatial database holds nationally consistent information about bores that were drilled as part of the Bore Construction Licensing Framework (http://www.bom.gov.au/water/groundwater/ngis/). The database contains 357,834 bore locations with associated lithology, bore construction and hydrostratigraphy records. This information was loaded into a relational database to facilitate analysis. Regolith depth extraction: The first step was to recognise and extract the boundary between the regolith and bedrock within each drillhole record. This was done using a key word look-up table of bedrock or lithology related words from the record descriptions. 1,910 unique descriptors were discovered. Using this list of new standardised terms analysis of the drillholes was conducted, and the depth value associated with the word in the description that was unequivocally pointing to reaching fresh bedrock material was extracted from each record using a tool developed in C# code. The second step of regolith depth extraction involved removal of drillhole bedrock depth records deemed necessary because of the "noisiness" in depth records resulting from inconsistencies we found in drilling and description standards indentified in the legacy database. On completion of the filtering and removal of outliers the drillhole database used in the model comprised of 128,033 depth sites. Selection and preparation of environmental covariates The environmental correlations style of DSM applies environmental covariate datasets to predict target variables, here regolith depth. Strongly performing environmental covariates operate as proxies for the factors that control regolith formation including climate, relief, parent material organisms and time (Jenny, 1941 Depth modelling was implemented using the PC-based R-statistical software (R Core Team, 2014), and relied on the R-Cubist package (Kuhn et al. 2013). To generate modelling uncertainty estimates, the following procedures were followed: (i) the random withholding of a subset comprising 20% of the whole depth record dataset for external validation; (ii) Bootstrap sampling 100 times of the remaining dataset to produce repeated model training datasets, each time. The Cubist model was then run repeated times to produce a unique rule set for each of these training sets. Repeated model runs using different training sets, a procedure referred to as bagging or bootstrap aggregating, is a machine learning ensemble procedure designed to improve the stability and accuracy of the model. The Cubist rule sets generated were then evaluated and applied spatially calculating a mean predicted value (i.e. the final map). The 5% and 95% confidence intervals were estimated for each grid cell (pixel) in the prediction dataset by combining the variance from the bootstrapping process and the variance of the model residuals. Version 2 differs from version 1, in that the modelling of depths was performed on the log scale to better conform to assumptions of normality used in calculating the confidence intervals. The method to estimate the confidence intervals was improved to better represent the full range of variability in the modelling process. (Wilford et al, in press)
CSIRO (2015) AUS Soil and Landscape Grid National Soil Attribute Maps - Depth of Regolith (3" resolution) - Release 2. Bioregional Assessment Source Dataset. Viewed 22 June 2018, http://data.bioregionalassessments.gov.au/dataset/c28597e8-8cfc-4b4f-8777-c9934051cce2.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This data and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are represented here as originally supplied:
Abstract: Boundary data on more than 1500 coastal wetlands of State significance and covered by State Environmental Planning Policy No. 14 (SEPP 14) as defined in The Coastal Wetlands Survey Report, prepared by Dr P Adam, Mr N Urwin, Mr P Weiner and Mr I Sim for the Coastal Council of New South Wales, 1985. SEPP 14 places planning and development controls under the Environmental Planning and Assessment Act, 1979 over the wetlands, which are illustrated on 82 hard copy printed maps that have been gazetted. These hard copy maps are the definitive source of the wetland boundaries although digital representation is also available. Coverage extends along the NSW coastline (and up to 30 kms inland) from the Queensland border to the Hawkesbury River and from Wollongong to the Victorian Border. Note: SEPP 14 excludes the Sydney metropolitan region, that is, the Hawkesbury River to Wollongong.
The aim of this policy is to ensure that the coastal wetlands are preserved and protected in the environmental and economic interests of the State.
This data and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are represented here as originally supplied:
Scope: Dataset Lineage: For the original wetlands survey, the NSW coastline, coastal plain areas and major estuarine river system were covered by an aerial photographic survey, carried out in 1981. The survey followed specifications set up by the then Department of Urban Affairs and Planning and are described in the Coastal Wetlands Survey Report of 1985. Seven wetland types were included: mangroves, saltmarshes, melaleuca forests, casuarina forests, sedgelands, brackish and freshwater swamps and wet meadows. The wetland boundaries were identified from the aerial photos on a botanical basis, using their vegetation features. They were delineated using stereoscopic interpretation (at up to 7 times magnification) of 1:25000 aerial photos. As the photographic scale closely approximated the 1:25000 scale of the LIC topographic map series, the transfer from photograph to map was carried out at close to one time magnification with minimum distortion. For a number of key areas, the photographic interpretations were checked and verified by inspections on the ground. The coastal wetland maps compilation was finished in 1984. A major aerial photo re-survey of the coastal area was carried out by LIC in 1986, and subsequently the wetland boundaries were then updated. They have subsequently been amended from time to time as required through a gazetted amendment to SEPP 14. The compiled maps were hand digitised using Genamap GIS software. The digitising accuracy is estimated to be 0.5 mtr on the 1:25000 maps. The wetlands polygons are labelled with numbers allocated in a sequential order from north to south between the Queensland border and the Hawkesbury River, and south to north from the Victorian border to Wollongong
NSW Department of Planning and Infrastructure (2006) State Environmental Planning Policy no. 14 - Coastal Wetlands 19891027. Bioregional Assessment Source Dataset. Viewed 18 June 2018, http://data.bioregionalassessments.gov.au/dataset/d2ec27ef-026b-4cb8-ad12-bd1d638240d0.
Web App. Use the tabs provided to discover information about map features and capabilities. Link to Metadata. A variety of searches can be performed to find the parcel of interest. Use the Query Tool to build searches. Click Apply button at the bottom of the tool.Query by Name (Last First) (e.g. Bond James)Query by Address (e.g. 41 S Central)Query by Locator number (e.g. 21J411046)Search results will be listed under the Results tab. Click on a parcel in the list to zoom to that parcel. Click on the parcel in the map and scroll through the pop-up to see more information about the parcel. Click the ellipse in the Results tab or in the pop-up to view information in a table. Attribute information can be exported to CSV file. Build a custom Filter to select and map properties by opening the Parcels attribute table:1. Click the arrow tab at the bottom middle of the map to expand the attribute table window2. Click on the Parcels tab3. Check off Filter by map extent4. Open Options>Filter5. Build expressions as needed to filter by owner name or other variables6. Select the needed records from the returned list7. Click Zoom to which will zoom to the selected recordsPlease note that as the map zooms out detailed layers, such as the parcel boundaries will not display.In addition to Search capabilities, the following tools are provided:MeasureThe measure tool provides the capabilities to draw a point, line, or polygon on the map and specify the unit of measurement.DrawThe draw tool provides the capabilities to draw a point, line, or polygon on the map as graphics. PrintThe print tool exports the map to either a PDF or image file. Click Settings button to configure map or remove legend.Map navigation using mouse and keyboard:Drag to panSHIFT + CTRL + Drag to zoom outMouse Scroll Forward to zoom inMouse Scroll Backward to zoom outUse Arrow keys to pan+ key to zoom in a level- key to zoom out a levelDouble Click to Zoom inFAQsHow to select a parcel: Click on a parcel in the map, or use Query Tool to search for parcel by owner, address or parcel id.How to select more than one parcel: Go to Select Tool and choose options on Select button.How to clear selected parcel(s): Go to Select Tool and click Clear.
The Key Map Grid Index dataset contains rectangular features representing index pages within Montgomery County, Texas. Each index page is proportioned to fit a letter-sized map and is assigned a unique identifier for reference purposes. This dataset facilitates the organization and retrieval of key map grids, with 24 key map grids fitting within a single index page. The index pages are numbered sequentially, and the key map grids within each index page are lettered accordingly, excluding the letters "I" and "O" to avoid confusion with numbers. The Key Map Grid Index was created by the Houston Map Company, which covers multiple counties in the Houston metropolitan area including Harris, Fort Bend, Galveston, Brazoria, Liberty, Waller, and Montgomery Counties. More information can be found on the Houston Map Company's website at www.keymaps.com.Data Fields Included:Index Page ID: Unique identifier assigned to each index pageBoundary Polygon: Rectangle representing the proportionate index page