https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Our dataset features comprehensive housing market data, extracted from 250,000 records sourced directly from Redfin USA. Our Crawl Feeds team utilized proprietary in-house tools to meticulously scrape and compile this valuable data.
Key Benefits of Our Housing Market Data:
Unlock the Power of Redfin Data for Real Estate Professionals
Leveraging our Redfin properties dataset allows real estate professionals to make data-driven decisions. With detailed insights into property listings, sales history, and pricing trends, agents and investors can identify opportunities in the market more effectively. The data is particularly useful for comparing neighborhood trends, understanding market demand, and making informed investment decisions.
Enhance Your Real Estate Research with Custom Filters and Analysis
Our Redfin dataset is not only extensive but also customizable, allowing users to apply filters based on specific criteria such as property type, listing status, and geographic location. This flexibility enables researchers and analysts to drill down into the data, uncovering patterns and insights that can guide strategic planning and market entry decisions. Whether you're tracking the performance of single-family homes or exploring multi-family property trends, this dataset offers the depth and accuracy needed for thorough analysis.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q1 2025 about sales, median, housing, and USA.
Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The May 2025 release includes:
As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This repository contains a comprehensive and clean dataset for predicting e-commerce sales, tailored for data scientists, machine learning enthusiasts, and researchers. The dataset is crafted to analyze sales trends, optimize pricing strategies, and develop predictive models for sales forecasting.
The dataset includes 1,000 records across the following features:
Column Name | Description |
---|---|
Date | The date of the sale (01-01-2023 onward). |
Product_Category | Category of the product (e.g., Electronics, Sports, Other). |
Price | Price of the product (numerical). |
Discount | Discount applied to the product (numerical). |
Customer_Segment | Buyer segment (e.g., Regular, Occasional, Other). |
Marketing_Spend | Marketing budget allocated for sales (numerical). |
Units_Sold | Number of units sold per transaction (numerical). |
Date: - Range: 01-01-2023 to 12-31-2023. - Contains 1,000 unique values without missing data.
Product_Category: - Categories: Electronics (21%), Sports (21%), Other (58%). - Most common category: Electronics (21%).
Price: - Range: From 244 to 999. - Mean: 505, Standard Deviation: 290. - Most common price range: 14.59 - 113.07.
Discount: - Range: From 0.01% to 49.92%. - Mean: 24.9%, Standard Deviation: 14.4%. - Most common discount range: 0.01 - 5.00%.
Customer_Segment: - Segments: Regular (35%), Occasional (34%), Other (31%). - Most common segment: Regular.
Marketing_Spend: - Range: From 2.41k to 10k. - Mean: 4.91k, Standard Deviation: 2.84k.
Units_Sold: - Range: From 5 to 57. - Mean: 29.6, Standard Deviation: 7.26. - Most common range: 24 - 34 units sold.
The dataset is suitable for creating the following visualizations: - 1. Price Distribution: Histogram to show the spread of prices. - 2. Discount Distribution: Histogram to analyze promotional offers. - 3. Marketing Spend Distribution: Histogram to understand marketing investment patterns. - 4. Customer Segment Distribution: Bar plot of customer segments. - 5. Price vs Units Sold: Scatter plot to show pricing effects on sales. - 6. Discount vs Units Sold: Scatter plot to explore the impact of discounts. - 7. Marketing Spend vs Units Sold: Scatter plot for marketing effectiveness. - 8. Correlation Heatmap: Identify relationships between features. - 9. Pairplot: Visualize pairwise feature interactions.
The dataset is synthetically generated to mimic realistic e-commerce sales trends. Below are the steps taken for data generation:
Feature Engineering:
Data Simulation:
Validation:
Note: The dataset is synthetic and not sourced from any real-world e-commerce platform.
Here’s an example of building a predictive model using Linear Regression:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Load the dataset
df = pd.read_csv('ecommerce_sales.csv')
# Feature selection
X = df[['Price', 'Discount', 'Marketing_Spend']]
y = df['Units_Sold']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Model training
model = LinearRegression()
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Evaluation
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')
print(f'R-squared: {r2:.2f}')
Develop Louisville Focuses on the full range of land development activities, including planning and design, vacant property initiatives, advanced planning, housing & community development programs, permits and licensing, land acquisition, public art and clean and green sustainable development partnerships.Data Dictionary:“LBA” is the abbreviation for the Louisville and Jefferson County LBA Authority, Inc."Parcel ID" is an identification code assigned to a piece of real estate by the Jefferson County Property Valuation Administration. The Parcel ID is used for record keeping and tax purposes.“IMPROV” stands for whether or not the real estate parcel had an “improvement” (i.e., a structure) situated on it at the time it was sold. “1” indicates that a structure existed when the parcel was sold and “0” indicates that the parcel was an empty, piece of land.“APPLICANT” is the individual(s) or active business entity that submitted an Application to Purchase the real estate parcel and whose application was presented to and approved by the LBA’s Board of Directors. The Board of Directors must approve each application before a transfer deed is officially recorded with the Office of the County Clerk of Jefferson County, Kentucky.“SALE DATE” is the date that the Applicant signed the transfer deed for the respective real estate parcel.“SALE AMOUNT” is the amount that the Applicant paid to purchase the respective real estate parcel.“SALE PROGRAM” is the LBA’s disposition program that the Applicant participated in to acquire the real estate parcel.The Office of Community Development defines each “Sale Program” as follows:Budget Rate (“Budget Rate Policy for New Construction Projects”) – Applicant submitted a proposed construction project for the empty, piece of land.Cut It Keep It - Applicant requested to maintain the empty piece of land situated on the same block as a real estate parcel owned by the Applicant. Applicant must retain ownership of the lot for three (3) years before the Applicant can sell it.Demo for Deed (“Last Look – Demo for Deed”) – Applicant requested to demolish the structure situated on the real estate parcel and retain the land for a future use.Flex Rate (“Flex Rate Policy for New Construction Projects”) – Applicant submitted a proposed construction project for the empty, piece of land but did not have proof of funding or a timeline as to when the project would be completed.Metro Redevelopment – The real estate parcel was part of a redevelopment project being considered by Metro Government.Minimum Pricing Policy – The pricing policy that was approved by the LBA’s Board of Directors and in effect as of the real estate parcel’s sale date.RFP (“Request for Proposals”) - Applicant requested to rehabilitate the structure in order to place it back into productive use within the neighborhood.Save the Structure (“Last Look – Save the Structure”) - Applicant requested to rehabilitate the structure in order to place it back into productive use within the neighborhood.Side Yard – The Applicant requested to acquire the LBA’s adjoining piece of land to make the Applicant’s occupied, real estate parcel larger and more valuable.SOI (“Solicitation of Interest”) – The LBA assembled two (2) or more real estate parcels and the Applicant submitted a redevelopment project for the subject parcels.For more information about each of the current disposition programs that the LBA offers, please refer to the following website pages:https://louisvilleky.gov/government/community-development/vacant-lot-sales-programshttps://louisvilleky.gov/government/community-development/vacant-structures-saleContact:Connie Suttonconnie.sutton@louisvilleky.gov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table shows the average purchase price that has been paid in the reporting period for existing own homes purchased by a private individual. The average purchase price of existing own homes may differ from the price index of existing own homes. The average purchase price is no indicator for price developments of owner-occupied residential property. The average purchase price reflects the average price of dwellings sold in a particular period. The fact that de dwellings sold differs from one period to another is not taken into account. The following instance explains which problems are entailed by the continually changing of the quality of the dwellings sold. Suppose in February of a particular year mainly big houses with extensive gardens beautifully situated alongside canals are sold, whereas in March many small terraced houses are sold. In that case the average purchase price in February will be higher than in March but this does not mean that house prices are increased. See note 3 for a link to the article 'Why the average purchase price is not an indicator'.
Data available from: 1995
Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The average purchasing prices of existing owner-occupied sold homes can be calculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.
Changes as of 17 February 2025: Added average purchase prices of the municipalities for the year 2024.
When will new figures be published? New figures are published approximately one to three months after the period under review.
https://data.peelregion.ca/pages/licensehttps://data.peelregion.ca/pages/license
This data set provides the calculated annual average price of residential homes sold, by home type, within Peel and the area municipalities since 2005. Data is compiled from monthly data released by the Toronto Real Estate Board’s Market Watch reports.NoteAverage annual home price by type for Peel and each of the area municipalities has been calculated using monthly sales and dollar volume. For years 2005 to 2011, data was first aggregated based on TREB districts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Home Sales in the United States decreased to 623 Thousand units in May from 722 Thousand units in April of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Our dataset features comprehensive housing market data, extracted from 250,000 records sourced directly from Redfin USA. Our Crawl Feeds team utilized proprietary in-house tools to meticulously scrape and compile this valuable data.
Key Benefits of Our Housing Market Data:
Unlock the Power of Redfin Data for Real Estate Professionals
Leveraging our Redfin properties dataset allows real estate professionals to make data-driven decisions. With detailed insights into property listings, sales history, and pricing trends, agents and investors can identify opportunities in the market more effectively. The data is particularly useful for comparing neighborhood trends, understanding market demand, and making informed investment decisions.
Enhance Your Real Estate Research with Custom Filters and Analysis
Our Redfin dataset is not only extensive but also customizable, allowing users to apply filters based on specific criteria such as property type, listing status, and geographic location. This flexibility enables researchers and analysts to drill down into the data, uncovering patterns and insights that can guide strategic planning and market entry decisions. Whether you're tracking the performance of single-family homes or exploring multi-family property trends, this dataset offers the depth and accuracy needed for thorough analysis.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data