7 datasets found
  1. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Western United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  2. d

    Data from: Monitoring the storage volume of water reservoirs using Google...

    • search.dataone.org
    • beta.hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joaquim Condeça; João Nascimento; Nuno Barreiras (2022). Monitoring the storage volume of water reservoirs using Google Earth Engine [Dataset]. http://doi.org/10.4211/hs.4fe324512fa34b2884a1b5c32b70e2c7
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Joaquim Condeça; João Nascimento; Nuno Barreiras
    Time period covered
    Jan 1, 1984 - Dec 31, 2019
    Area covered
    Description

    Recently, the satellite images have been used in remote sensing allowing observations with high temporal and spatial distribution. The use of water indices has proved to be an effective methodology in the monitoring of surface water resources. However, precise or automatic methodologies using satellite imagery to determine reservoir volumes are lacking. To fulfil that gap, this methodology proposes 3 stages: use Google Earth Engine (GEE) to select images; automatically calculate flooded surface areas applying water indices; determine the volume stored in reservoirs over those years based on the relation between the flooded area and the stored volume. The method was applied in four reservoirs and contemplate Landsat 4 and 5 ETM and Landsat 8 OLI. For the calculation of the flooded area the NDWI Indexes (McFeeters, 1996; Gao, 1996), and the MNDWI index (Xu, 2006) were applied and tested. The estimation of stored volume of water was made based on the area indices and a cross-check between real stored volume and calculated volume was made. Finally, an analysis on the selection of the best fit water indices was made. The results of every case studies herein displayed showed a quantifiable proficiency and reliability for quite a varied natural conditions. As a conclusion, this methodology could be seen as a tool for water resources management in developing countries, and not only, to measure automatically trends of stored volumes and its relation with the precipitation, and could eventually be extended to other types of surface water bodies, as lakes and coastal lagoons.

  3. f

    Table3_Research on temporal and spatial evolution of land use and landscape...

    • figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanhua Fu; Yalin Zhang (2023). Table3_Research on temporal and spatial evolution of land use and landscape pattern in Anshan City based on GEE.XLS [Dataset]. http://doi.org/10.3389/fenvs.2022.988346.s003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Yanhua Fu; Yalin Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Anshan
    Description

    Frequent mining activities can bring about problems such as soil erosion and environmental pollution, which are detrimental to the efficient use of land and the sustainable development of cities. Existing studies have paid little attention to mining areas and lack comparative analysis of landscape changes in multiple mining pits. In this paper, the main urban area of Anshan City, where the mining areas are concentrated, was used as the research area, and the Landsat TM/OLI surface reflectance (SR) data of the Google Earth Engine (GEE) platform and the random forest algorithm were used to map the land use in 2008, 2014, and 2020. On this basis, land use dynamics and landscape pattern indices were used to analyze the changes in land use and landscape patterns in the Anshan City area. In addition, a moving window method was combined to further analyze and compare the landscape changes between different pits. The results show that:1. From 2008 to 2020, the construction land in Anshan urban area continued to decline, the forest land continued to expand, and the construction land was shifted to the forest land and cultivated land. Mining land increased before 2014 and remained almost unchanged after 2014, which is in line with the actual situation. 2. During the study period, the landscape fragmentation degree and landscape heterogeneity in the urban area of Anshan kept increasing. The high value areas of landscape fragmentation were the urban-rural combination areas and the mining areas. Among them, the reclamation of Dagushan and Donganshan is better, while the reclamation of Anqian, Yanqianshan and Xiaolingzi mines needs to be strengthened. 3. The random forest algorithm based on GEE shows a high degree of accuracy for land use classification. The overall classification accuracy in 3 years exceeds 90% and the kappa coefficient exceeds 0.85. The study results can be used as an essential reference for optimizing the urban ecological environment and provide technical backing for the urbanization construction and rational use of land in Anshan City.

  4. H

    JavaScript code for retrieval of MODIS Collection 6 NDSI snow cover at...

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Feb 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; David Tarboton (2022). JavaScript code for retrieval of MODIS Collection 6 NDSI snow cover at SNOTEL sites and a Jupyter Notebook to merge/reprocess data [Dataset]. http://doi.org/10.4211/hs.d287f010b2dd48edb0573415a56d47f8
    Explore at:
    zip(52.2 KB)Available download formats
    Dataset updated
    Feb 11, 2022
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; David Tarboton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This JavaScript code has been developed to retrieve NDSI_Snow_Cover from MODIS version 6 for SNOTEL sites using the Google Earth Engine platform. To successfully run the code, you should have a Google Earth Engine account. An input file, called NWM_grid_Western_US_polygons_SNOTEL_ID.zip, is required to run the code. This input file includes 1 km grid cells of the NWM containing SNOTEL sites. You need to upload this input file to the Assets tap in the Google Earth Engine code editor. You also need to import the MOD10A1.006 Terra Snow Cover Daily Global 500m collection to the Google Earth Engine code editor. You may do this by searching for the product name in the search bar of the code editor.

    The JavaScript works for s specified time range. We found that the best period is a month, which is the maximum allowable time range to do the computation for all SNOTEL sites on Google Earth Engine. The script consists of two main loops. The first loop retrieves data for the first day of a month up to day 28 through five periods. The second loop retrieves data from day 28 to the beginning of the next month. The results will be shown as graphs on the right-hand side of the Google Earth Engine code editor under the Console tap. To save results as CSV files, open each time-series by clicking on the button located at each graph's top right corner. From the new web page, you can click on the Download CSV button on top.

    Here is the link to the script path: https://code.earthengine.google.com/?scriptPath=users%2Figarousi%2Fppr2-modis%3AMODIS-monthly

    Then, run the Jupyter Notebook (merge_downloaded_csv_files.ipynb) to merge the downloaded CSV files that are stored for example in a folder called output/from_GEE into one single CSV file which is merged.csv. The Jupyter Notebook then applies some preprocessing steps and the final output is NDSI_FSCA_MODIS_C6.csv.

  5. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR)

    • developers.google.com
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Union/ESA/Copernicus (2020). Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR) [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    European Space Agencyhttp://www.esa.int/
    Time period covered
    Mar 28, 2017 - Jun 8, 2025
    Area covered
    Description

    After 2022-01-25, Sentinel-2 scenes with PROCESSING_BASELINE '04.00' or above have their DN (value) range shifted by 1000. The HARMONIZED collection shifts data in newer scenes to be in the same range as in older scenes. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies, including the …

  6. Sentinel-2: Cloud Probability

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Union/ESA/Copernicus/SentinelHub, Sentinel-2: Cloud Probability [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY
    Explore at:
    Dataset provided by
    European Space Agencyhttp://www.esa.int/
    Time period covered
    Jun 27, 2015 - Jun 9, 2025
    Area covered
    Description

    The S2 cloud probability is created with the sentinel2-cloud-detector library (using LightGBM). All bands are upsampled using bilinear interpolation to 10m resolution before the gradient boost base algorithm is applied. The resulting 0..1 floating point probability is scaled to 0..100 and stored as an UINT8. Areas missing any or all …

  7. Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide

    • developers.google.com
    Updated Jun 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Union/ESA/Copernicus (2019). Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2
    Explore at:
    Dataset updated
    Jun 6, 2019
    Dataset provided by
    European Space Agencyhttp://www.esa.int/
    Time period covered
    Jul 10, 2018 - Jun 8, 2025
    Area covered
    Earth
    Description

    NRTI/L3_NO2 This dataset provides near real-time high-resolution imagery of NO2 concentrations. Nitrogen oxides (NO2 and NO) are important trace gases in the Earth's atmosphere, present in both the troposphere and the stratosphere. They enter the atmosphere as a result of anthropogenic activities (notably fossil fuel combustion and biomass burning) and natural processes (wildfires, lightning, and microbiological processes in soils). Here, NO2 is used to represent concentrations of collective nitrogen oxides because during daytime, i.e. in the presence of sunlight, a photochemical cycle involving ozone (O3) converts NO into NO2 and vice versa on a timescale of minutes. The TROPOMI NO2 processing system is based on the algorithm developments for the DOMINO-2 product and for the EU QA4ECV NO2 reprocessed dataset for OMI, and has been adapted for TROPOMI. This retrieval-assimilation-modelling system uses the 3-dimensional global TM5-MP chemistry transport model at a resolution of 1x1 degree as an essential element. More information. NRTI L3 Product To make our NRTI L3 products, we use harpconvert to grid the data. Example harpconvert invocation for one tile: harpconvert --format hdf5 --hdf5-compression 9 -a 'tropospheric_NO2_column_number_density_validity>50;derive(datetime_stop {time}); bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01); keep(NO2_column_number_density,tropospheric_NO2_column_number_density, stratospheric_NO2_column_number_density,NO2_slant_column_number_density, tropopause_pressure,absorbing_aerosol_index,cloud_fraction, sensor_altitude,sensor_azimuth_angle, sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)' S5P_NRTI_L2_NO2_20181107T013042_20181107T013542_05529_01_010200_20181107T021824.nc output.h5 Sentinel-5 Precursor Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument). All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere). Because of noise in the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2. The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed). Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2. The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than: 80% for AER_AI 75% for the tropospheric_NO2_column_number_density band of NO2 50% for all other datasets except for O3 and SO2 The O3_TCL product is ingested directly (without running harpconvert).

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so

Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States"

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
U.S. Geological Survey
Area covered
Western United States
Description

This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

Search
Clear search
Close search
Google apps
Main menu