100+ datasets found
  1. AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

    The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
    Demand for Image/Video remains higher in the Ai Training Data market.
    The Healthcare category held the highest Ai Training Data market revenue share in 2023.
    North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
    

    Market Dynamics of AI Training Data Market

    Key Drivers of AI Training Data Market

    Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
    

    A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

    In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

    (Source: about:blank)

    Advancements in Data Labelling Technologies to Propel Market Growth
    

    The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

    In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

    www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

    Restraint Factors Of AI Training Data Market

    Data Privacy and Security Concerns to Restrict Market Growth
    

    A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

    How did COVID–19 impact the Ai Training Data market?

    The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

  2. U

    U.S. AI Training Dataset Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2024). U.S. AI Training Dataset Market Report [Dataset]. https://www.archivemarketresearch.com/reports/us-ai-training-dataset-market-4957
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The U.S. AI Training Dataset Market size was valued at USD 590.4 million in 2023 and is projected to reach USD 1880.70 million by 2032, exhibiting a CAGR of 18.0 % during the forecasts period. The U. S. AI training dataset market deals with the generation, selection, and organization of datasets used in training artificial intelligence. These datasets contain the requisite information that the machine learning algorithms need to infer and learn from. Conducts include the advancement and improvement of AI solutions in different fields of business like transport, medical analysis, computing language, and money related measurements. The applications include training the models for activities such as image classification, predictive modeling, and natural language interface. Other emerging trends are the change in direction of more and better-quality, various and annotated data for the improvement of model efficiency, synthetic data generation for data shortage, and data confidentiality and ethical issues in dataset management. Furthermore, due to arising technologies in artificial intelligence and machine learning, there is a noticeable development in building and using the datasets. Recent developments include: In February 2024, Google struck a deal worth USD 60 million per year with Reddit that will give the former real-time access to the latter’s data and use Google AI to enhance Reddit’s search capabilities. , In February 2024, Microsoft announced around USD 2.1 billion investment in Mistral AI to expedite the growth and deployment of large language models. The U.S. giant is expected to underpin Mistral AI with Azure AI supercomputing infrastructure to provide top-notch scale and performance for AI training and inference workloads. .

  3. Data from: Multi-Source Distributed System Data for AI-powered Analytics

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao; Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao (2022). Multi-Source Distributed System Data for AI-powered Analytics [Dataset]. http://doi.org/10.5281/zenodo.3549604
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 10, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao; Sasho Nedelkoski; Jasmin Bogatinovski; Ajay Kumar Mandapati; Soeren Becker; Jorge Cardoso; Odej Kao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract:

    In recent years there has been an increased interest in Artificial Intelligence for IT Operations (AIOps). This field utilizes monitoring data from IT systems, big data platforms, and machine learning to automate various operations and maintenance (O&M) tasks for distributed systems.
    The major contributions have been materialized in the form of novel algorithms.
    Typically, researchers took the challenge of exploring one specific type of observability data sources, such as application logs, metrics, and distributed traces, to create new algorithms.
    Nonetheless, due to the low signal-to-noise ratio of monitoring data, there is a consensus that only the analysis of multi-source monitoring data will enable the development of useful algorithms that have better performance.
    Unfortunately, existing datasets usually contain only a single source of data, often logs or metrics. This limits the possibilities for greater advances in AIOps research.
    Thus, we generated high-quality multi-source data composed of distributed traces, application logs, and metrics from a complex distributed system. This paper provides detailed descriptions of the experiment, statistics of the data, and identifies how such data can be analyzed to support O&M tasks such as anomaly detection, root cause analysis, and remediation.

    General Information:

    This repository contains the simple scripts for data statistics, and link to the multi-source distributed system dataset.

    You may find details of this dataset from the original paper:

    Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, Odej Kao, "Multi-Source Distributed System Data for AI-powered Analytics".

    If you use the data, implementation, or any details of the paper, please cite!

    BIBTEX:

    _

    @inproceedings{nedelkoski2020multi,
     title={Multi-source Distributed System Data for AI-Powered Analytics},
     author={Nedelkoski, Sasho and Bogatinovski, Jasmin and Mandapati, Ajay Kumar and Becker, Soeren and Cardoso, Jorge and Kao, Odej},
     booktitle={European Conference on Service-Oriented and Cloud Computing},
     pages={161--176},
     year={2020},
     organization={Springer}
    }
    

    _

    The multi-source/multimodal dataset is composed of distributed traces, application logs, and metrics produced from running a complex distributed system (Openstack). In addition, we also provide the workload and fault scripts together with the Rally report which can serve as ground truth. We provide two datasets, which differ on how the workload is executed. The sequential_data is generated via executing workload of sequential user requests. The concurrent_data is generated via executing workload of concurrent user requests.

    The raw logs in both datasets contain the same files. If the user wants the logs filetered by time with respect to the two datasets, should refer to the timestamps at the metrics (they provide the time window). In addition, we suggest to use the provided aggregated time ranged logs for both datasets in CSV format.

    Important: The logs and the metrics are synchronized with respect time and they are both recorded on CEST (central european standard time). The traces are on UTC (Coordinated Universal Time -2 hours). They should be synchronized if the user develops multimodal methods. Please read the IMPORTANT_experiment_start_end.txt file before working with the data.

    Our GitHub repository with the code for the workloads and scripts for basic analysis can be found at: https://github.com/SashoNedelkoski/multi-source-observability-dataset/

  4. Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata

    • datarade.ai
    .csv
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WIRESTOCK (2023). Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata [Dataset]. https://datarade.ai/data-products/wirestock-s-ai-ml-image-training-data-4-5m-files-with-metadata-wirestock
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Wirestock
    Authors
    WIRESTOCK
    Area covered
    Estonia, Pakistan, Jersey, Sudan, Swaziland, Peru, New Caledonia, Belarus, Chile, Georgia
    Description

    Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata: This data product is a unique offering in the realm of AI/ML training data. What sets it apart is the sheer volume and diversity of the dataset, which includes 4.5 million files spanning across 20 different categories. These categories range from Animals/Wildlife and The Arts to Technology and Transportation, providing a rich and varied dataset for AI/ML applications.

    The data is sourced from Wirestock's platform, where creators upload and sell their photos, videos, and AI art online. This means that the data is not only vast but also constantly updated, ensuring a fresh and relevant dataset for your AI/ML needs. The data is collected in a GDPR-compliant manner, ensuring the privacy and rights of the creators are respected.

    The primary use-cases for this data product are numerous. It is ideal for training machine learning models for image recognition, improving computer vision algorithms, and enhancing AI applications in various industries such as retail, healthcare, and transportation. The diversity of the dataset also means it can be used for more niche applications, such as training AI to recognize specific objects or scenes.

    This data product fits into Wirestock's broader data offering as a key resource for AI/ML training. Wirestock is a platform for creators to sell their work, and this dataset is a collection of that work. It represents the breadth and depth of content available on Wirestock, making it a valuable resource for any company working with AI/ML.

    The core benefits of this dataset are its volume, diversity, and quality. With 4.5 million files, it provides a vast resource for AI training. The diversity of the dataset, spanning 20 categories, ensures a wide range of images for training purposes. The quality of the images is also high, as they are sourced from creators selling their work on Wirestock.

    In terms of how the data is collected, creators upload their work to Wirestock, where it is then sold on various marketplaces. This means the data is sourced directly from creators, ensuring a diverse and unique dataset. The data includes both the images themselves and associated metadata, providing additional context for each image.

    The different image categories included in this dataset are Animals/Wildlife, The Arts, Backgrounds/Textures, Beauty/Fashion, Buildings/Landmarks, Business/Finance, Celebrities, Education, Emotions, Food Drinks, Holidays, Industrial, Interiors, Nature Parks/Outdoor, People, Religion, Science, Signs/Symbols, Sports/Recreation, Technology, Transportation, Vintage, Healthcare/Medical, Objects, and Miscellaneous. This wide range of categories ensures a diverse dataset that can cater to a variety of AI/ML applications.

  5. The Artificial Intelligence in Retail Market size was USD 4951.2 Million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The Artificial Intelligence in Retail Market size was USD 4951.2 Million in 2023 [Dataset]. https://www.cognitivemarketresearch.com/artificial-intelligence-in-retail-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Artificial Intelligence in Retail market size is USD 4951.2 million in 2023and will expand at a compound annual growth rate (CAGR) of 39.50% from 2023 to 2030.

    Enhanced customer personalization to provide viable market output
    Demand for online remains higher in Artificial Intelligence in the Retail market.
    The machine learning and deep learning category held the highest Artificial Intelligence in Retail market revenue share in 2023.
    North American Artificial Intelligence In Retail will continue to lead, whereas the Asia-Pacific Artificial Intelligence In Retail market will experience the most substantial growth until 2030.
    

    Enhanced Customer Personalization to Provide Viable Market Output

    A primary driver of Artificial Intelligence in the Retail market is the pursuit of enhanced customer personalization. A.I. algorithms analyze vast datasets of customer behaviors, preferences, and purchase history to deliver highly personalized shopping experiences. Retailers leverage this insight to offer tailored product recommendations, targeted marketing campaigns, and personalized promotions. The drive for superior customer personalization not only enhances customer satisfaction but also increases engagement and boosts sales. This focus on individualized interactions through A.I. applications is a key driver shaping the dynamic landscape of A.I. in the retail market.

    January 2023 - Microsoft and digital start-up AiFi worked together to offer Smart Store Analytics. It is a cloud-based tracking solution that helps merchants with operational and shopper insights for intelligent, cashierless stores.

    Source-techcrunch.com/2023/01/10/aifi-microsoft-smart-store-analytics/

    Improved Operational Efficiency to Propel Market Growth
    

    Another pivotal driver is the quest for improved operational efficiency within the retail sector. A.I. technologies streamline various aspects of retail operations, from inventory management and demand forecasting to supply chain optimization and cashier-less checkout systems. By automating routine tasks and leveraging predictive analytics, retailers can enhance efficiency, reduce costs, and minimize errors. The pursuit of improved operational efficiency is a key motivator for retailers to invest in AI solutions, enabling them to stay competitive, adapt to dynamic market conditions, and meet the evolving demands of modern consumers in the highly competitive artificial intelligence (AI) retail market.

    January 2023 - The EY Retail Intelligence solution, which is based on Microsoft Cloud, was introduced by the Fintech business EY to give customers a safe and efficient shopping experience. In order to deliver insightful information, this solution makes use of Microsoft Cloud for Retail and its technologies, which include image recognition, analytics, and artificial intelligence (A.I.).

    Source-www.ey.com/en_gl/news/2023/01/ey-announces-launch-of-retail-solution-that-builds-on-the-microsoft-cloud-to-help-achieve-seamless-consumer-shopping-experiences

    Market Dynamics of the Artificial Intelligence in the Retail market

    Data Security Concerns to Restrict Market Growth
    

    A prominent restraint in Artificial Intelligence in the Retail market is the pervasive concern over data security. As retailers increasingly rely on A.I. to process vast amounts of customer data for personalized experiences, there is a growing apprehension regarding the protection of sensitive information. The potential for data breaches and cyberattacks poses a significant challenge, as retailers must navigate the delicate balance between utilizing customer data for AI-driven initiatives and safeguarding it against potential security threats. Addressing these concerns is crucial to building and maintaining consumer trust in A.I. applications within the retail sector.

    Impact of COVID–19 on the Artificial Intelligence in the Retail market

    The COVID-19 pandemic significantly influenced artificial intelligence in the retail market, accelerating the adoption of A.I. technologies across the industry. With lockdowns, social distancing measures, and a surge in online shopping, retailers turned to A.I. to navigate the challenges posed by the pandemic. AI-powered solutions played a crucial role in optimizing supply chain management, predicting shifts in consumer behavior, and enhancing e-commerce experiences. Retailers lever...

  6. d

    AI TOOLS - Open Dataset - 4000 tools / 50 categories

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BUREAU, Olivier (2023). AI TOOLS - Open Dataset - 4000 tools / 50 categories [Dataset]. http://doi.org/10.7910/DVN/QLSXZG
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    BUREAU, Olivier
    Description

    Introducing a comprehensive and openly accessible dataset designed for researchers and data scientists in the field of artificial intelligence. This dataset encompasses a collection of over 4,000 AI tools, meticulously categorized into more than 50 distinct categories. This valuable resource has been generously shared by its owner, TasticAI, and is freely available for various purposes such as research, benchmarking, market surveys, and more. Dataset Overview: The dataset provides an extensive repository of AI tools, each accompanied by a wealth of information to facilitate your research endeavors. Here is a brief overview of the key components: AI Tool Name: Each AI tool is listed with its name, providing an easy reference point for users to identify specific tools within the dataset. Description: A concise one-line description is provided for each AI tool. This description offers a quick glimpse into the tool's purpose and functionality. AI Tool Category: The dataset is thoughtfully organized into more than 50 distinct categories, ensuring that you can easily locate AI tools that align with your research interests or project needs. Whether you are working on natural language processing, computer vision, machine learning, or other AI subfields, you will find a dedicated category. Images: Visual representation is crucial for understanding and identifying AI tools. To aid your exploration, the dataset includes images associated with each tool, allowing for quick recognition and visual association. Website Links: Accessing more detailed information about a specific AI tool is effortless, as direct links to the tool's respective website or documentation are provided. This feature enables researchers and data scientists to delve deeper into the tools that pique their interest. Utilization and Benefits: This openly shared dataset serves as a valuable resource for various purposes: Research: Researchers can use this dataset to identify AI tools relevant to their studies, facilitating faster literature reviews, comparative analyses, and the exploration of cutting-edge technologies. Benchmarking: The extensive collection of AI tools allows for comprehensive benchmarking, enabling you to evaluate and compare tools within specific categories or across categories. Market Surveys: Data scientists and market analysts can utilize this dataset to gain insights into the AI tool landscape, helping them identify emerging trends and opportunities within the AI market. Educational Purposes: Educators and students can leverage this dataset for teaching and learning about AI tools, their applications, and the categorization of AI technologies. Conclusion: In summary, this openly shared dataset from TasticAI, featuring over 4,000 AI tools categorized into more than 50 categories, represents a valuable asset for researchers, data scientists, and anyone interested in the field of artificial intelligence. Its easy accessibility, detailed information, and versatile applications make it an indispensable resource for advancing AI research, benchmarking, market analysis, and more. Explore the dataset at https://tasticai.com and unlock the potential of this rich collection of AI tools for your projects and studies.

  7. Success.ai | LinkedIn Full Dataset | Enrichment API – 700M Public Profiles &...

    • datarade.ai
    Updated Jan 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2022). Success.ai | LinkedIn Full Dataset | Enrichment API – 700M Public Profiles & 70M Companies – Best Price and Quality Guarantee [Dataset]. https://datarade.ai/data-products/success-ai-linkedin-full-dataset-enrichment-api-700m-pu-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2022
    Dataset provided by
    Area covered
    Saint Barthélemy, Jordan, Guatemala, Tunisia, Svalbard and Jan Mayen, Equatorial Guinea, United Republic of, Qatar, Greenland, Nicaragua
    Description

    Success.ai’s LinkedIn Data Solutions offer unparalleled access to a vast dataset of 700 million public LinkedIn profiles and 70 million LinkedIn company records, making it one of the most comprehensive and reliable LinkedIn datasets available on the market today. Our employee data and LinkedIn data are ideal for businesses looking to streamline recruitment efforts, build highly targeted lead lists, or develop personalized B2B marketing campaigns.

    Whether you’re looking for recruiting data, conducting investment research, or seeking to enrich your CRM systems with accurate and up-to-date LinkedIn profile data, Success.ai provides everything you need with pinpoint precision. By tapping into LinkedIn company data, you’ll have access to over 40 critical data points per profile, including education, professional history, and skills.

    Key Benefits of Success.ai’s LinkedIn Data: Our LinkedIn data solution offers more than just a dataset. With GDPR-compliant data, AI-enhanced accuracy, and a price match guarantee, Success.ai ensures you receive the highest-quality data at the best price in the market. Our datasets are delivered in Parquet format for easy integration into your systems, and with millions of profiles updated daily, you can trust that you’re always working with fresh, relevant data.

    API Integration: Our datasets are easily accessible via API, allowing for seamless integration into your existing systems. This ensures that you can automate data retrieval and update processes, maintaining the flow of fresh, accurate information directly into your applications.

    Global Reach and Industry Coverage: Our LinkedIn data covers professionals across all industries and sectors, providing you with detailed insights into businesses around the world. Our geographic coverage spans 259M profiles in the United States, 22M in the United Kingdom, 27M in India, and thousands of profiles in regions such as Europe, Latin America, and Asia Pacific. With LinkedIn company data, you can access profiles of top companies from the United States (6M+), United Kingdom (2M+), and beyond, helping you scale your outreach globally.

    Why Choose Success.ai’s LinkedIn Data: Success.ai stands out for its tailored approach and white-glove service, making it easy for businesses to receive exactly the data they need without managing complex data platforms. Our dedicated Success Managers will curate and deliver your dataset based on your specific requirements, so you can focus on what matters most—reaching the right audience. Whether you’re sourcing employee data, LinkedIn profile data, or recruiting data, our service ensures a seamless experience with 99% data accuracy.

    • Best Price Guarantee: We offer unbeatable pricing on LinkedIn data, and we’ll match any competitor.
    • Global Scale: Access 700 million LinkedIn profiles and 70 million company records globally.
    • AI-Verified Accuracy: Enjoy 99% data accuracy through our advanced AI and manual validation processes.
    • Real-Time Data: Profiles are updated daily, ensuring you always have the most relevant insights.
    • Tailored Solutions: Get custom-curated LinkedIn data delivered directly, without managing platforms.
    • Ethically Sourced Data: Compliant with global privacy laws, ensuring responsible data usage.
    • Comprehensive Profiles: Over 40 data points per profile, including job titles, skills, and company details.
    • Wide Industry Coverage: Covering sectors from tech to finance across regions like the US, UK, Europe, and Asia.

    Key Use Cases:

    • Sales Prospecting and Lead Generation: Build targeted lead lists using LinkedIn company data and professional profiles, helping sales teams engage decision-makers at high-value accounts.
    • Recruitment and Talent Sourcing: Use LinkedIn profile data to identify and reach top candidates globally. Our employee data includes work history, skills, and education, providing all the details you need for successful recruitment.
    • Account-Based Marketing (ABM): Use our LinkedIn company data to tailor marketing campaigns to key accounts, making your outreach efforts more personalized and effective.
    • Investment Research & Due Diligence: Identify companies with strong growth potential using LinkedIn company data. Access key data points such as funding history, employee count, and company trends to fuel investment decisions.
    • Competitor Analysis: Stay ahead of your competition by tracking hiring trends, employee movement, and company growth through LinkedIn data. Use these insights to adjust your market strategy and improve your competitive positioning.
    • CRM Data Enrichment: Enhance your CRM systems with real-time updates from Success.ai’s LinkedIn data, ensuring that your sales and marketing teams are always working with accurate and up-to-date information.
    • Comprehensive Data Points for LinkedIn Profiles: Our LinkedIn profile data includes over 40 key data points for every individual and company, ensuring a complete understandin...
  8. t

    Generative AI Company Database

    • theinformation.com
    • notlon.app
    csv
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Information (2023). Generative AI Company Database [Dataset]. https://www.theinformation.com/projects/generative-ai
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    The Information
    Time period covered
    2023 - Present
    Area covered
    Worldwide
    Dataset funded by
    The Information
    Description

    As the frenzy around generative artificial intelligence intensifies, The Information has built a database of more than 100 companies making software and services that use generative AI. Investors are jockeying to join the action: Together, the startups on our list have raised more than $20 billion. Our data comes from our reporting, founders, investors and PitchBook, which provides private market data. We will regularly update the database with more companies and more information about how they are growing.

  9. Meta Kaggle Code

    • kaggle.com
    zip
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaggle (2025). Meta Kaggle Code [Dataset]. https://www.kaggle.com/datasets/kaggle/meta-kaggle-code/code
    Explore at:
    zip(133186454988 bytes)Available download formats
    Dataset updated
    Mar 20, 2025
    Dataset authored and provided by
    Kagglehttp://kaggle.com/
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Explore our public notebook content!

    Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.

    Why we’re releasing this dataset

    By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.

    Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.

    The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!

    Sensitive data

    While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.

    Joining with Meta Kaggle

    The files contained here are a subset of the KernelVersions in Meta Kaggle. The file names match the ids in the KernelVersions csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.

    File organization

    The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.

    The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays

    Questions / Comments

    We love feedback! Let us know in the Discussion tab.

    Happy Kaggling!

  10. Aegis-AI-Content-Safety-Dataset-1.0

    • huggingface.co
    Updated Apr 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NVIDIA (2024). Aegis-AI-Content-Safety-Dataset-1.0 [Dataset]. https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-1.0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    Nvidiahttp://nvidia.com/
    Authors
    NVIDIA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    🛡️ Aegis AI Content Safety Dataset 1.0

    Aegis AI Content Safety Dataset is an open-source content safety dataset (CC-BY-4.0), which adheres to Nvidia's content safety taxonomy, covering 13 critical risk categories (see Dataset Description).

      Dataset Details
    
    
    
    
    
    
    
      Dataset Description
    

    The Aegis AI Content Safety Dataset is comprised of approximately 11,000 manually annotated interactions between humans and LLMs, split into 10,798 training samples and 1,199… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-1.0.

  11. Success.ai | B2B Company & Contact Data – 28M Verified Company Profiles -...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Success.ai | B2B Company & Contact Data – 28M Verified Company Profiles - Global - Best Price Guarantee & 99% Data Accuracy [Dataset]. https://datarade.ai/data-products/success-ai-b2b-company-contact-data-28m-verified-compan-success-ai
    Explore at:
    .json, .csv, .bin, .xml, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    United Republic of, Poland, Hungary, Somalia, Burundi, Solomon Islands, Niger, Greenland, Côte d'Ivoire, India
    Description

    Success.ai’s Company Data Solutions provide businesses with powerful, enterprise-ready B2B company datasets, enabling you to unlock insights on over 28 million verified company profiles. Our solution is ideal for organizations seeking accurate and detailed B2B contact data, whether you’re targeting large enterprises, mid-sized businesses, or small business contact data.

    Success.ai offers B2B marketing data across industries and geographies, tailored to fit your specific business needs. With our white-glove service, you’ll receive curated, ready-to-use company datasets without the hassle of managing data platforms yourself. Whether you’re looking for UK B2B data or global datasets, Success.ai ensures a seamless experience with the most accurate and up-to-date information in the market.

    Why Choose Success.ai’s Company Data Solution? At Success.ai, we prioritize quality and relevancy. Every company profile is AI-validated for a 99% accuracy rate and manually reviewed to ensure you're accessing actionable and GDPR-compliant data. Our price match guarantee ensures you receive the best deal on the market, while our white-glove service provides personalized assistance in sourcing and delivering the data you need.

    Why Choose Success.ai?

    • Best Price Guarantee: We offer industry-leading pricing and beat any competitor.
    • Global Reach: Access over 28 million verified company profiles across 195 countries.
    • Comprehensive Data: Over 15 data points, including company size, industry, funding, and technologies used.
    • Accurate & Verified: AI-validated with a 99% accuracy rate, ensuring high-quality data.
    • Real-Time Updates: Stay ahead with continuously updated company information.
    • Ethically Sourced Data: Our B2B data is compliant with global privacy laws, ensuring responsible use.
    • Dedicated Service: Receive personalized, curated data without the hassle of managing platforms.
    • Tailored Solutions: Custom datasets are built to fit your unique business needs and industries.

    Our database spans 195 countries and covers 28 million public and private company profiles, with detailed insights into each company’s structure, size, funding history, and key technologies. We provide B2B company data for businesses of all sizes, from small business contact data to large corporations, with extensive coverage in regions such as North America, Europe, Asia-Pacific, and Latin America.

    Comprehensive Data Points: Success.ai delivers in-depth information on each company, with over 15 data points, including:

    Company Name: Get the full legal name of the company. LinkedIn URL: Direct link to the company's LinkedIn profile. Company Domain: Website URL for more detailed research. Company Description: Overview of the company’s services and products. Company Location: Geographic location down to the city, state, and country. Company Industry: The sector or industry the company operates in. Employee Count: Number of employees to help identify company size. Technologies Used: Insights into key technologies employed by the company, valuable for tech-based outreach. Funding Information: Track total funding and the most recent funding dates for investment opportunities. Maximize Your Sales Potential: With Success.ai’s B2B contact data and company datasets, sales teams can build tailored lists of target accounts, identify decision-makers, and access real-time company intelligence. Our curated datasets ensure you’re always focused on high-value leads—those who are most likely to convert into clients. Whether you’re conducting account-based marketing (ABM), expanding your sales pipeline, or looking to improve your lead generation strategies, Success.ai offers the resources you need to scale your business efficiently.

    Tailored for Your Industry: Success.ai serves multiple industries, including technology, healthcare, finance, manufacturing, and more. Our B2B marketing data solutions are particularly valuable for businesses looking to reach professionals in key sectors. You’ll also have access to small business contact data, perfect for reaching new markets or uncovering high-growth startups.

    From UK B2B data to contacts across Europe and Asia, our datasets provide global coverage to expand your business reach and identify new markets. With continuous data updates, Success.ai ensures you’re always working with the freshest information.

    Key Use Cases:

    • Targeted Lead Generation: Build accurate lead lists by filtering data by company size, industry, or location. Target decision-makers in key industries to streamline your B2B sales outreach.
    • Account-Based Marketing (ABM): Use B2B company data to personalize marketing campaigns, focusing on high-value accounts and improving conversion rates.
    • Investment Research: Track company growth, funding rounds, and employee trends to identify investment opportunities or potential M&A targets.
    • Market Research: Enrich your market intelligence initiatives by gain...
  12. Aegis-AI-Content-Safety-Dataset-2.0

    • huggingface.co
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NVIDIA (2025). Aegis-AI-Content-Safety-Dataset-2.0 [Dataset]. https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    Nvidiahttp://nvidia.com/
    Authors
    NVIDIA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    🛡️ Aegis AI Content Safety Dataset 2.0

    The Aegis AI Content Safety Dataset 2.0 is comprised of 33,416 annotated interactions between humans and LLMs, split into 30,007 training samples, 1,445 validation samples, and 1,964 test samples. This release is an extension of the previously published Aegis 1.0 Content Safety Dataset. To curate the dataset, we use the HuggingFace version of human preference data about harmlessness from Anthropic HH-RLHF. We extract only the prompts, and… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0.

  13. Data from: IA Tweets Analysis Dataset (Spanish)

    • zenodo.org
    • produccioncientifica.uca.es
    • +1more
    csv
    Updated Aug 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Guerrero-Contreras; Gabriel Guerrero-Contreras; Sara Balderas-Díaz; Sara Balderas-Díaz; Alejandro Serrano-Fernández; Andrés Muñoz; Andrés Muñoz; Alejandro Serrano-Fernández (2024). IA Tweets Analysis Dataset (Spanish) [Dataset]. http://doi.org/10.5281/zenodo.10821485
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gabriel Guerrero-Contreras; Gabriel Guerrero-Contreras; Sara Balderas-Díaz; Sara Balderas-Díaz; Alejandro Serrano-Fernández; Andrés Muñoz; Andrés Muñoz; Alejandro Serrano-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General Description

    This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.

    Data Collection Method

    Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.

    Dataset Content

    • ID: A unique identifier for each tweet.
    • text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
    • polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
    • favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
    • retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
    • user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
    • user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
    • user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
    • user_followers_count: The current number of followers the account has. It is a non-negative integer.
    • user_friends_count: The number of users that the account is following. It is a non-negative integer.
    • user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
    • user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
    • user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
    • user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.

    Cite as

    Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.

    Potential Use Cases

    This dataset is aimed at academic researchers and practitioners with interests in:

    • Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
    • Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
    • Exploring correlations between user engagement metrics and sentiment in discussions about AI.

    Data Format and File Type

    The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.

    License

    The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.

  14. d

    Coresignal | Private Company Data | Company Data | AI-Enriched Datasets |...

    • datarade.ai
    .json, .csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coresignal, Coresignal | Private Company Data | Company Data | AI-Enriched Datasets | Global / 35M+ Records / Updated Weekly [Dataset]. https://datarade.ai/data-products/coresignal-private-company-data-company-data-ai-enriche-coresignal
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Coresignal
    Area covered
    Pitcairn, Jamaica, Benin, Kyrgyzstan, Argentina, Bhutan, Togo, Grenada, Kiribati, Senegal
    Description

    This Private Company Data dataset is a refined version of our company datasets, consisting of 35M+ data records.

    It’s an excellent data solution for companies with limited data engineering capabilities and those who want to reduce their time to value. You get filtered, cleaned, unified, and standardized B2B private company data. This data is also enriched by leveraging a carefully instructed large language model (LLM).

    AI-powered data enrichment offers more accurate information in key data fields, such as company descriptions. It also produces over 20 additional data points that are very valuable to B2B businesses. Enhancing and highlighting the most important information in web data contributes to quicker time to value, making data processing much faster and easier.

    For your convenience, you can choose from multiple data formats (Parquet, JSON, JSONL, or CSV) and select suitable delivery frequency (quarterly, monthly, or weekly).

    Coresignal is a leading private company data provider in the web data sphere with an extensive focus on firmographic data and public employee profiles. More than 3B data records in different categories enable companies to build data-driven products and generate actionable insights. Coresignal is exceptional in terms of data freshness, with 890M+ records updated monthly for unprecedented accuracy and relevance.

  15. F

    Bahasa Open Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Open Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/bahasa-open-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Bahasa Open-Ended Question Answering Dataset is a meticulously curated collection of comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and Question-answering models in the Bahasa language, advancing the field of artificial intelligence.

    Dataset Content: This QA dataset comprises a diverse set of open-ended questions paired with corresponding answers in Bahasa. There is no context paragraph given to choose an answer from, and each question is answered without any predefined context content. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Bahasa people, and references were taken from diverse sources like books, news articles, websites, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity: To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. Additionally, questions are further classified into fact-based and opinion-based categories, creating a comprehensive variety. The QA dataset also contains the question with constraints and persona restrictions, which makes it even more useful for LLM training.Answer Formats: To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraph types of answers. The answer contains text strings, numerical values, date and time formats as well. Such diversity strengthens the Language model's ability to generate coherent and contextually appropriate answers.Data Format and Annotation Details: This fully labeled Bahasa Open Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as id, language, domain, question_length, prompt_type, question_category, question_type, complexity, answer_type, rich_text.Quality and Accuracy: The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    Both the question and answers in Bahasa are grammatically accurate without any word or grammatical errors. No copyrighted, toxic, or harmful content is used while building this dataset.

    Continuous Updates and Customization: The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.License: The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Bahasa Open Ended Question Answer Dataset to enhance the language understanding capabilities of their generative ai models, improve response generation, and explore new approaches to NLP question-answering tasks.

  16. F

    Bahasa Closed Ended Question Answer Text Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Closed Ended Question Answer Text Dataset [Dataset]. https://www.futurebeeai.com/dataset/prompt-response-dataset/bahasa-closed-ended-question-answer-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    What’s Included

    The Bahasa Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Bahasa language, advancing the field of artificial intelligence.

    Dataset Content: This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Bahasa. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.

    Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Bahasa people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.

    This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.

    Question Diversity: To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.Answer Formats: To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.Data Format and Annotation Details: This fully labeled Bahasa Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.Quality and Accuracy: The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.

    The Bahasa versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.

    Continuous Updates and Customization: The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.License: The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Bahasa Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.

  17. Dataset of channels and received IEEE 802.11ay signals for sensing...

    • catalog.data.gov
    • data.nist.gov
    • +1more
    Updated Jul 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). Dataset of channels and received IEEE 802.11ay signals for sensing applications in the 60GHz band [Dataset]. https://catalog.data.gov/dataset/dataset-of-channels-and-received-ieee-802-11ay-signals-for-sensing-applications-in-the-60g
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    The dataset can be used to develop and test algorithms for communication and sensing in the 60GHz band. The dataset consists of synthetically generated indoor mm-wave channels between a MIMO transmitter and a MIMO receivers. Multiple targets are moving in the room. Number of targets, velocity of each target and trajectory are randomized across the dataset. The dataset contains also noisy received IEEE 802.11ay channel estimation fields. The dataset is suitable for development and testing of machine/deep learning algorithms. The dataset can be used to participate to the ITU AI/ML 5G Challenge. For information on the challenge and registration, please refer to: https://challenge.aiforgood.itu.int/match/matchitem/38. The challenge dataset relies on the open-source software available at: https://github.com/usnistgov/PS-002-WALDO.

  18. i

    Authcode - Dataset

    • ieee-dataport.org
    • portalinvestigacion.um.es
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Miguel Sánchez Sánchez (2020). Authcode - Dataset [Dataset]. http://doi.org/10.21227/ttcs-ak23
    Explore at:
    Dataset updated
    Apr 17, 2020
    Dataset provided by
    IEEE Dataport
    Authors
    Pedro Miguel Sánchez Sánchez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Intending to cover the existing gap regarding behavioral datasets modelling interactions of users with individual a multiple devices in Smart Office to later authenticate them continuously, we publish the following collection of datasets, which has been generated after having five users interacting for 60 days with their personal computer and mobile devices. Below you can find a brief description of each dataset. Dataset 1 (2.3 GB). This dataset contains 92975 vectors of features (8096 per vector) that model the interactions of the five users with their personal computers. Each vector contains aggregated data about keyboard and mouse activity, as well as application usage statistics. More info about features meaning can be found in the readme file. Originally, the number of features of this dataset was 24 065 but after filtering the constant features, this number was reduced to 8096. There was a high number of constant features to 0 since each possible digraph (two keys combination) was considered when collecting the data. However, there are many unusual digraphs that the users never introduced in their computers, so these features were deleted in the uploaded dataset. Dataset 2 (8.9 MB). This dataset contains 61918 vectors of features (15 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about application usage statistics. More info about features meaning can be found in the readme file.Dataset 3 (28.9 MB). This dataset contains 133590vectors of features (42 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about the gyroscope and Accelerometer sensors. More info about features meaning can be found in the readme file.Dataset 4 (162.4 MB). This dataset contains 145465vectors of features (241 per vector)that model the interactions of the five users with both personal computers and mobile devices. Each vector contains the aggregation of the most relevant features of both devices. More info about features meaning can be found in the readme file.Dataset 5 (878.7 KB). This dataset is composed of 7 datasets. Each one of them contains an aggregation of feature vectors generated from the active/inactive intervals of personal computers and mobile devices by considering different time windows ranging from 1h to 24h.1h: 4074 vectors2h: 2149 vectors3h: 1470 vectors4h: 1133 vectors6h: 770 vectors12h: 440 vectors24h: 229 vectors

  19. f

    Flagship Dataset of Type 2 Diabetes from the AI-READI Project

    • fairhub.io
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI-READI Consortium (2024). Flagship Dataset of Type 2 Diabetes from the AI-READI Project [Dataset]. https://fairhub.io/datasets/1
    Explore at:
    Dataset updated
    May 3, 2024
    Dataset provided by
    fairhub
    Authors
    AI-READI Consortium
    Dataset funded by
    National Institutes of Health
    Description

    This dataset contain data from 204 participants from the pilot period of the AI-READI project (July 19, 2023 to November 30, 2023). Data from multiple modalities are included. The data in this dataset contain no protected health information (PHI). Information related to the sex and race/ethnicity of the participants as well as medication used has also been removed. A detailed description of the dataset is available in the AI-READI documentation for v1.0.0 of the dataset at https://docs.aireadi.org

  20. Success.ai | Private Company Data | 28M Verified Company Profiles - Best...

    • datarade.ai
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2024). Success.ai | Private Company Data | 28M Verified Company Profiles - Best Price Guarantee [Dataset]. https://datarade.ai/data-products/success-ai-private-company-data-28m-verified-company-prof-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Area covered
    Tokelau, Comoros, Kazakhstan, Bosnia and Herzegovina, San Marino, Burundi, Togo, Angola, Lao People's Democratic Republic, Norway
    Description

    Success.ai’s Private Company Data Solutions offer businesses access to over 28 million verified company profiles, delivering detailed insights into private company data across multiple industries. Our solution includes firmographic data and business location data for companies of all sizes, from large enterprises to small businesses. Whether you're seeking small business contact data or company funding data, Success.ai’s company data solutions empower businesses with the accuracy and depth they need to drive B2B sales, marketing, and research initiatives.

    At Success.ai, we offer tailored B2B datasets to meet specific business requirements. With our white-glove service, you’ll receive curated datasets customized to fit your needs, without the hassle of managing data platforms yourself. Our solution is GDPR-compliant, AI-validated with a 99% accuracy rate, and offers the best price guarantee on the market.

    Why choose Success.ai?

    • Best Price Guarantee: Our pricing beats any competitor, ensuring you get the best deal.
    • Global Reach: 28M verified company profiles spanning 195 countries, providing coverage across industries.
    • AI-Validated Accuracy: 99% accuracy rate, ensuring high-quality, actionable data.
    • Real-Time Updates: Data is continuously updated to ensure you’re working with the freshest insights.
    • Ethically Sourced & Compliant: All data is GDPR-compliant and ethically sourced from trusted partners.
    • Comprehensive Data: Over 15 key data points per company, including firmographic data, funding history, company size, and technologies used.
    • Tailored Service: Custom datasets are delivered directly to you, eliminating the need for platform navigation.

    Our database includes comprehensive insights into company structures, employee counts, key technologies, and company funding data. Whether you’re targeting companies by business location or looking for detailed firmographic data, Success.ai’s datasets ensure you have all the data you need to drive your strategy.

    Comprehensive data points:

    Company Name LinkedIn URL Company Domain Company Description Business Location: Full details down to the city, state, and country Company Industry Employee Count Technologies Used Funding Information: Total funding and the latest funding dates

    Maximize your sales potential by targeting decision-makers and building targeted account lists using Success.ai’s B2B contact data and company profiles. Our datasets are ideal for account-based marketing (ABM), investment research, market analysis, and CRM enrichment. Success.ai’s company data provides sales and marketing teams with the actionable insights they need to scale their efforts efficiently.

    Key Use Cases:

    • Targeted Lead Generation: Build precise lead lists by filtering company data by industry, size, or location.
    • Account-Based Marketing (ABM): Use detailed firmographic data to focus marketing efforts on high-value accounts.
    • Investment Research: Analyze company growth trends and funding history to identify high-potential investments.
    • Market Research: Gain insights into industry trends, competitor activity, and market positioning for strategic planning.
    • CRM Enrichment: Keep your CRM updated with verified company data, ensuring streamlined workflows.

    With Success.ai, you’ll benefit from our best price guarantee, industry-leading accuracy, and white-glove service. We specialize in private company data, small business contact data, and business location data, providing comprehensive solutions for B2B marketing, sales, and research teams. Whether you need firmographic data or insights on company funding, our real-time datasets will help you stay ahead of the competition.

    Get started with Success.ai today and take advantage of our price match guarantee, ensuring you receive the best possible deal on high-quality company data. Contact us to receive your custom dataset and transform your business with real-time insights.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
Organization logo

AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

Explore at:
pdf,excel,csv,pptAvailable download formats
Dataset updated
Jan 15, 2025
Dataset authored and provided by
Cognitive Market Research
License

https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

Time period covered
2021 - 2033
Area covered
Global
Description

According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.

Market Dynamics of AI Training Data Market

Key Drivers of AI Training Data Market

Rising Demand for Industry-Specific Datasets to Provide Viable Market Output

A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

(Source: about:blank)

Advancements in Data Labelling Technologies to Propel Market Growth

The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

Restraint Factors Of AI Training Data Market

Data Privacy and Security Concerns to Restrict Market Growth

A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

How did COVID–19 impact the Ai Training Data market?

The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

Search
Clear search
Close search
Google apps
Main menu