100+ datasets found
  1. S

    Test dataset of ChatGPT in medical field

    • scidb.cn
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    robin shen (2023). Test dataset of ChatGPT in medical field [Dataset]. http://doi.org/10.57760/sciencedb.o00130.00001
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    Science Data Bank
    Authors
    robin shen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The researcher tests the QA capability of ChatGPT in the medical field from the following aspects:1. Test their reserve capacity for medical knowledge2. Check their ability to read literature and understand medical literature3. Test their ability of auxiliary diagnosis after reading case data4. Test its error correction ability for case data5. Test its ability to standardize medical terms6. Test their evaluation ability to experts7. Check their ability to evaluate medical institutionsThe conclusion is:ChatGPT has great potential in the application of medical and health care, and may directly replace human beings or even professionals at a certain level in some fields;The researcher preliminarily believe that ChatGPT has basic medical knowledge and the ability of multiple rounds of dialogue, and its ability to understand Chinese is not weak;ChatGPT has the ability to read, understand and correct cases;ChatGPT has the ability of information extraction and terminology standardization, and is quite excellent;ChatGPT has the reasoning ability of medical knowledge;ChatGPT has the ability of continuous learning. After continuous training, its level has improved significantly;ChatGPT does not have the academic evaluation ability of Chinese medical talents, and the results are not ideal;ChatGPT does not have the academic evaluation ability of Chinese medical institutions, and the results are not ideal;ChatGPT is an epoch-making product, which can become a useful assistant for medical diagnosis and treatment, knowledge service, literature reading, review and paper writing.

  2. A dataset to investigate ChatGPT for enhancing Students' Learning Experience...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniele Schicchi; Davide Taibi; Daniele Schicchi; Davide Taibi (2024). A dataset to investigate ChatGPT for enhancing Students' Learning Experience via Concept Maps [Dataset]. http://doi.org/10.5281/zenodo.12076681
    Explore at:
    Dataset updated
    Jun 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daniele Schicchi; Davide Taibi; Daniele Schicchi; Davide Taibi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset was compiled to examine the use of ChatGPT 3.5 in educational settings, particularly for creating and personalizing concept maps.
    The data has been organized into three folders: Maps, Texts, and Questionnaires. The Maps folder contains the graphical representation of the concept maps and the PlanUML code for drawing them in Italian and English. The Texts folder contains the source text used as input for the map's creation The Questionnaires folder includes the students' responses to the three administered questionnaires.

  3. i

    "ChatGPT vs. Student: A Dataset for Source Classification of Computer...

    • ieee-dataport.org
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ALI ABDULLAH S ALQAHTANI (2023). "ChatGPT vs. Student: A Dataset for Source Classification of Computer Science Answers [Dataset]. https://ieee-dataport.org/documents/chatgpt-vs-student-dataset-source-classification-computer-science-answers
    Explore at:
    Dataset updated
    Jul 19, 2023
    Authors
    ALI ABDULLAH S ALQAHTANI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    along with the corresponding answers from students and ChatGPT.

  4. f

    Datasets .csv

    • figshare.com
    txt
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaser Alhasawi (2024). Datasets .csv [Dataset]. http://doi.org/10.6084/m9.figshare.25053146.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset provided by
    figshare
    Authors
    Yaser Alhasawi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for this research project was meticulously constructed to investigate the adoption of ChatGPT among students in the United States. The primary objective was to gain insights into the technological barriers and resistances faced by students in integrating ChatGPT into their information systems. The dataset was designed to capture the diverse adoption patterns among students in various public and private schools and universities across the United States. By examining adoption rates, frequency of usage, and the contexts in which ChatGPT is employed, the research sought to provide a comprehensive understanding of how students are incorporating this technology into their information systems. Moreover, by including participants from diverse educational institutions, the research sought to ensure a comprehensive representation of the student population in the United States. This approach aimed to provide nuanced insights into how factors such as educational background, institution type, and technological familiarity influence ChatGPT adoption.

  5. n

    Large Language Model content safety considerations text data

    • m.nexdata.ai
    Updated Oct 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2023). Large Language Model content safety considerations text data [Dataset]. https://m.nexdata.ai/datasets/llm/1349
    Explore at:
    Dataset updated
    Oct 3, 2023
    Dataset provided by
    nexdata technology inc
    Authors
    Nexdata
    Variables measured
    Language, Data size, Data content, Storage format, Collecting type, Collecting method
    Description

    Large Language Model content safety considerations text data, about 570,000 in total, this dataset can be used for tasks such as LLM training, chatgpt

  6. Data from: Dataset of the study: "Chatbots put to the test in math and logic...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vagelis Plevris; Vagelis Plevris; George Papazafeiropoulos; George Papazafeiropoulos; Alejandro Jiménez Rios; Alejandro Jiménez Rios (2024). Dataset of the study: "Chatbots put to the test in math and logic problems: A preliminary comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard" [Dataset]. http://doi.org/10.5281/zenodo.7940782
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vagelis Plevris; Vagelis Plevris; George Papazafeiropoulos; George Papazafeiropoulos; Alejandro Jiménez Rios; Alejandro Jiménez Rios
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the 30 questions that were posed to the chatbots (i) ChatGPT-3.5; (ii) ChatGPT-4; and (iii) Google Bard, in May 2023 for the study “Chatbots put to the test in math and logic problems: A preliminary comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard”. These 30 questions describe mathematics and logic problems that have a unique correct answer. The questions are fully described with plain text only, without the need for any images or special formatting. The questions are divided into two sets of 15 questions each (Set A and Set B). The questions of Set A are 15 “Original” problems that cannot be found online, at least in their exact wording, while Set B contains 15 “Published” problems that one can find online by searching on the internet, usually with their solution. Each question is posed three times to each chatbot. This dataset contains the following: (i) The full set of the 30 questions, A01-A15 and B01-B15; (ii) the correct answer for each one of them; (iii) an explanation of the solution, for the problems where such an explanation is needed, (iv) the 30 (questions) × 3 (chatbots) × 3 (answers) = 270 detailed answers of the chatbots. For the published problems of Set B, we also provide a reference to the source where each problem was taken from.

  7. Recording of incorrect data in the ChatGPT algorithm database in Poland 2023...

    • statista.com
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Recording of incorrect data in the ChatGPT algorithm database in Poland 2023 [Dataset]. https://www.statista.com/statistics/1461455/poland-recording-of-faulty-data-in-the-chatgpt-algorithm-database/
    Explore at:
    Dataset updated
    Apr 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 6, 2023 - Apr 24, 2023
    Area covered
    Poland
    Description

    In 2023, more than half of Polish respondents had no opinion on whether ChatGPT would store wrong information in the algorithm's database.

  8. h

    awesome-chatgpt-prompts

    • huggingface.co
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fatih Kadir Akın (2023). awesome-chatgpt-prompts [Dataset]. https://huggingface.co/datasets/fka/awesome-chatgpt-prompts
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 15, 2023
    Authors
    Fatih Kadir Akın
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Description

    🧠 Awesome ChatGPT Prompts [CSV dataset]

    This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub

      License
    

    CC-0

  9. f

    Data_Sheet_1_Advanced large language models and visualization tools for data...

    • frontiersin.figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge Valverde-Rebaza; Aram González; Octavio Navarro-Hinojosa; Julieta Noguez (2024). Data_Sheet_1_Advanced large language models and visualization tools for data analytics learning.csv [Dataset]. http://doi.org/10.3389/feduc.2024.1418006.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Frontiers
    Authors
    Jorge Valverde-Rebaza; Aram González; Octavio Navarro-Hinojosa; Julieta Noguez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionIn recent years, numerous AI tools have been employed to equip learners with diverse technical skills such as coding, data analysis, and other competencies related to computational sciences. However, the desired outcomes have not been consistently achieved. This study aims to analyze the perspectives of students and professionals from non-computational fields on the use of generative AI tools, augmented with visualization support, to tackle data analytics projects. The focus is on promoting the development of coding skills and fostering a deep understanding of the solutions generated. Consequently, our research seeks to introduce innovative approaches for incorporating visualization and generative AI tools into educational practices.MethodsThis article examines how learners perform and their perspectives when using traditional tools vs. LLM-based tools to acquire data analytics skills. To explore this, we conducted a case study with a cohort of 59 participants among students and professionals without computational thinking skills. These participants developed a data analytics project in the context of a Data Analytics short session. Our case study focused on examining the participants' performance using traditional programming tools, ChatGPT, and LIDA with GPT as an advanced generative AI tool.ResultsThe results shown the transformative potential of approaches based on integrating advanced generative AI tools like GPT with specialized frameworks such as LIDA. The higher levels of participant preference indicate the superiority of these approaches over traditional development methods. Additionally, our findings suggest that the learning curves for the different approaches vary significantly. Since learners encountered technical difficulties in developing the project and interpreting the results. Our findings suggest that the integration of LIDA with GPT can significantly enhance the learning of advanced skills, especially those related to data analytics. We aim to establish this study as a foundation for the methodical adoption of generative AI tools in educational settings, paving the way for more effective and comprehensive training in these critical areas.DiscussionIt is important to highlight that when using general-purpose generative AI tools such as ChatGPT, users must be aware of the data analytics process and take responsibility for filtering out potential errors or incompleteness in the requirements of a data analytics project. These deficiencies can be mitigated by using more advanced tools specialized in supporting data analytics tasks, such as LIDA with GPT. However, users still need advanced programming knowledge to properly configure this connection via API. There is a significant opportunity for generative AI tools to improve their performance, providing accurate, complete, and convincing results for data analytics projects, thereby increasing user confidence in adopting these technologies. We hope this work underscores the opportunities and needs for integrating advanced LLMs into educational practices, particularly in developing computational thinking skills.

  10. f

    Data from: How generative AI models such as ChatGPT can be (mis)used in SPC...

    • tandf.figshare.com
    html
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fadel M. Megahed; Ying-Ju Chen; Joshua A. Ferris; Sven Knoth; L. Allison Jones-Farmer (2024). How generative AI models such as ChatGPT can be (mis)used in SPC practice, education, and research? An exploratory study [Dataset]. http://doi.org/10.6084/m9.figshare.23532743.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Fadel M. Megahed; Ying-Ju Chen; Joshua A. Ferris; Sven Knoth; L. Allison Jones-Farmer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Generative Artificial Intelligence (AI) models such as OpenAI’s ChatGPT have the potential to revolutionize Statistical Process Control (SPC) practice, learning, and research. However, these tools are in the early stages of development and can be easily misused or misunderstood. In this paper, we give an overview of the development of Generative AI. Specifically, we explore ChatGPT’s ability to provide code, explain basic concepts, and create knowledge related to SPC practice, learning, and research. By investigating responses to structured prompts, we highlight the benefits and limitations of the results. Our study indicates that the current version of ChatGPT performs well for structured tasks, such as translating code from one language to another and explaining well-known concepts but struggles with more nuanced tasks, such as explaining less widely known terms and creating code from scratch. We find that using new AI tools may help practitioners, educators, and researchers to be more efficient and productive. However, in their current stages of development, some results are misleading and wrong. Overall, the use of generative AI models in SPC must be properly validated and used in conjunction with other methods to ensure accurate results.

  11. m

    The Impact of AI and ChatGPT on Bangladeshi University Students

    • data.mendeley.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Jhirul Islam (2025). The Impact of AI and ChatGPT on Bangladeshi University Students [Dataset]. http://doi.org/10.17632/zykphpvbr7.2
    Explore at:
    Dataset updated
    Jan 6, 2025
    Authors
    Md Jhirul Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The data set records the perceptions of Bangladeshi university students on the influence that AI tools, especially ChatGPT, have on their academic practices, learning experiences, and problem-solving abilities. The varying role of AI in education, which covers common usage statistics, what AI does to our creative abilities, its impact on our learning, and whether it could invade our privacy. This dataset reveals perspective on how AI tools are changing education in the country and offering valuable information for researchers, educators, policymakers, to understand trends, challenges, and opportunities in the adoption of AI in the academic contex.

    Methodology Data Collection Method: Online survey using google from Participants: A total of 3,512 students from various Bangladeshi universities participated. Survey Questions:The survey included questions on demographic information, frequency of AI tool usage, perceived benefits, concerns regarding privacy, and impacts on creativity and learning.

    Sampling Technique: Random sampling of university students Data Collection Period: June 2024 to December 2024

    Privacy Compliance This dataset has been anonymized to remove any personally identifiable information (PII). It adheres to relevant privacy regulations to ensure the confidentiality of participants.

    For further inquiries, please contact: Name: Md Jhirul Islam, Daffodil International University Email: jhirul15-4063@diu.edu.bd Phone: 01316317573

  12. d

    Replication Data for: ChatGPT on ChatGPT: An Exploratory Analysis of its...

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Jieshu; Kiran, Elif; S.R. Aurora (also known as Mai P. Trinh); Simeone, Michael; Lobo, José (2024). Replication Data for: ChatGPT on ChatGPT: An Exploratory Analysis of its Performance in the Public Sector Workforce [Dataset]. http://doi.org/10.7910/DVN/P3CDHS
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Wang, Jieshu; Kiran, Elif; S.R. Aurora (also known as Mai P. Trinh); Simeone, Michael; Lobo, José
    Description

    This repository contains two datasets used in the study exploring the impact of Generative AI, specifically ChatGPT, on the public sector workforce in the United States. The datasets provide detailed information on the core tasks of public sector occupations and their estimated performance metrics, including potential for automation and augmentation by ChatGPT. These estimations are generated by OpenAI’s GPT-4 model (GPT-4-1106-preview) through OpenAI API.

  13. DeepSeek vs ChatGPT: AI Platform Comparison

    • kaggle.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aakif Khan (2025). DeepSeek vs ChatGPT: AI Platform Comparison [Dataset]. https://www.kaggle.com/datasets/khanaakif/deepseek-vs-chatgpt-ai-platform-comparison
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aakif Khan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    DeepSeek vs. ChatGPT: AI Performance & User Behavior (July 2023 - Feb 2025)

    This synthetically generated dataset provides a realistic AI performance comparison between ChatGPT (GPT-4-turbo) and DeepSeek (DeepSeek-Chat 1.5) over a 1.5-year period. With 10,000+ rows, it captures key user interaction metrics, platform performance indicators, and AI response characteristics to analyze trends in accuracy, engagement, and adoption.

    Key Features:

    • Time-Series Ready – Granular date and time columns for trend and seasonality analysis.
    • Comparative AI Analysis – Compare user engagement, retention rates, and response quality.
    • User Behavior Insights – Analyze session durations, input text complexity, and user ratings.
    • Technical Performance Metrics – Evaluate AI response accuracy and processing speed.
    • Data Cleaning Practice – Includes intentionally introduced null values for preprocessing exercises.

    Ideal For:

    • AI benchmarking and platform performance studies
    • Time-series forecasting and trend analysis
    • Data preprocessing and feature engineering
    • Power BI, SQL, and Python-based analytical dashboards

    📜 License: MIT – Free for research, projects, and analysis.

  14. o

    ChatGPT Twitter Dataset

    • opendatabay.com
    .undefined
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). ChatGPT Twitter Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/f629eb0b-473a-4d7e-8043-3d6d7a600271
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Social Media and Networking
    Description

    This dataset contains a collection of tweets with the hashtag #chatgpt. The tweets were scraped from Twitter and cover a range of topics related to the ChatGPT language model. The dataset includes the following information for each tweet:

    Tweet text User information (username, user ID, location, etc.) Tweet timestamp Retweet and favorite count Hashtags used in the tweet URLs The dataset provides a glimpse into the online conversation surrounding the ChatGPT language model and can be used for various natural language processing and machine learning tasks, such as sentiment analysis, topic modeling, and more. It allows understanding the community, the level of interest, and the use of chatGPT.

    License

    CC0

    Original Data Source: ChatGPT Twitter Dataset

  15. r

    Public data files containing the data used for the ChatGPT survey (XLSX) and...

    • researchdata.edu.au
    • figshare.mq.edu.au
    Updated Sep 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Petocz; Matt Bower; Mark Alfano; Jodie Torrington; Jennifer Lai (2023). Public data files containing the data used for the ChatGPT survey (XLSX) and the survey containing variable selection codes (DOCX). [Dataset]. http://doi.org/10.25949/24123306.V1
    Explore at:
    Dataset updated
    Sep 21, 2023
    Dataset provided by
    Macquarie University
    Authors
    Peter Petocz; Matt Bower; Mark Alfano; Jodie Torrington; Jennifer Lai
    Description

    This project investigated teacher attitudes towards Generative Artificial Intelligence Tools (GAITs). In excess of three hundred teachers were surveyed across a broad variety of teaching levels, demographic areas, experience levels, and disciplinary areas, to better understand how they believe teaching and assessment should change as a result of GAITs such as ChatGPT.

    Teachers were invited to complete an online survey relating to their perceptions of the open Artificial Intelligence (AI) tool ChatGPT, and how it will influence what they teach and how they assess. The purpose of the study is to provide teachers, policymakers, and society at large with an understanding of the potential impact of tools such as ChatGPT on Education.

    This dataset contains public data files used for the ChatGPT survey (XLSX) and the survey containing variable selection codes (DOCX). See the second sheet of the XLSX file for variable descriptions.


  16. h

    ASRS-ChatGPT

    • huggingface.co
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archana Tikayat Ray (2023). ASRS-ChatGPT [Dataset]. http://doi.org/10.57967/hf/0830
    Explore at:
    Dataset updated
    Jun 29, 2023
    Authors
    Archana Tikayat Ray
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Summary

    The dataset contains a total of 9984 incident records and 9 columns. Some of the columns contain ground truth values whereas others contain information generated by ChatGPT based on the incident Narratives. The creation of this dataset is aimed at providing researchers with columns generated by using ChatGPT API which is not freely available.

      Dataset Structure
    

    The column names present in the dataset and their descriptions are provided below:

    Column… See the full description on the dataset page: https://huggingface.co/datasets/archanatikayatray/ASRS-ChatGPT.

  17. h

    chatgpt-paraphrases

    • huggingface.co
    Updated Mar 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Humarin (2023). chatgpt-paraphrases [Dataset]. https://huggingface.co/datasets/humarin/chatgpt-paraphrases
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2023
    Dataset authored and provided by
    Humarin
    License

    https://choosealicense.com/licenses/openrail/https://choosealicense.com/licenses/openrail/

    Description

    This is a dataset of paraphrases created by ChatGPT. Model based on this dataset is avaible: model

      We used this prompt to generate paraphrases
    

    Generate 5 similar paraphrases for this question, show it like a numbered list without commentaries: {text} This dataset is based on the Quora paraphrase question, texts from the SQUAD 2.0 and the CNN news dataset. We generated 5 paraphrases for each sample, totally this dataset has about 420k data rows. You can make 30 rows from a row from… See the full description on the dataset page: https://huggingface.co/datasets/humarin/chatgpt-paraphrases.

  18. o

    ChatGPT App Reviews

    • opendatabay.com
    .undefined
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). ChatGPT App Reviews [Dataset]. https://www.opendatabay.com/data/ai-ml/3ecb80ad-dd56-4f41-afa0-dd5fd29dad80
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Datasimple
    Area covered
    Reviews & Ratings
    Description

    The ChatGPT App Reviews dataset is a comprehensive collection of user reviews from the ChatGPT mobile app on iOS, capturing valuable insights and sentiments. The dataset enables the understanding of user satisfaction, evaluation of app performance, and identification of emerging patterns.

    The way data was collected Scraping ChatGPT reviews on App Store

    Ideas for using this dataset Sentiment analysis What makes the application receive 1-star and 5-star

    License

    Attribution-NoDerivatives 4.0

    Original Data Source: ChatGPT App Reviews

  19. e

    ChatGPT Usage by Age Group – Survey Data

    • expresslegalfunding.com
    html
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Express Legal Funding (2025). ChatGPT Usage by Age Group – Survey Data [Dataset]. https://expresslegalfunding.com/chatgpt-study/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset authored and provided by
    Express Legal Funding
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    60+, 18–29, 30–44, 45–60
    Description

    This dataset presents ChatGPT usage patterns across different age groups, showing the percentage of users who have followed its advice, used it without following advice, or have never used it, based on a 2025 U.S. survey.

  20. h

    Chatgpt

    • huggingface.co
    Updated Apr 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajdeep Chatterjee (2023). Chatgpt [Dataset]. https://huggingface.co/datasets/RajChat/Chatgpt
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 12, 2023
    Authors
    Rajdeep Chatterjee
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    OpenAssistant Conversations Dataset (OASST1)

      Dataset Summary
    

    In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations (OASST1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort… See the full description on the dataset page: https://huggingface.co/datasets/RajChat/Chatgpt.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
robin shen (2023). Test dataset of ChatGPT in medical field [Dataset]. http://doi.org/10.57760/sciencedb.o00130.00001

Test dataset of ChatGPT in medical field

Explore at:
247 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 3, 2023
Dataset provided by
Science Data Bank
Authors
robin shen
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The researcher tests the QA capability of ChatGPT in the medical field from the following aspects:1. Test their reserve capacity for medical knowledge2. Check their ability to read literature and understand medical literature3. Test their ability of auxiliary diagnosis after reading case data4. Test its error correction ability for case data5. Test its ability to standardize medical terms6. Test their evaluation ability to experts7. Check their ability to evaluate medical institutionsThe conclusion is:ChatGPT has great potential in the application of medical and health care, and may directly replace human beings or even professionals at a certain level in some fields;The researcher preliminarily believe that ChatGPT has basic medical knowledge and the ability of multiple rounds of dialogue, and its ability to understand Chinese is not weak;ChatGPT has the ability to read, understand and correct cases;ChatGPT has the ability of information extraction and terminology standardization, and is quite excellent;ChatGPT has the reasoning ability of medical knowledge;ChatGPT has the ability of continuous learning. After continuous training, its level has improved significantly;ChatGPT does not have the academic evaluation ability of Chinese medical talents, and the results are not ideal;ChatGPT does not have the academic evaluation ability of Chinese medical institutions, and the results are not ideal;ChatGPT is an epoch-making product, which can become a useful assistant for medical diagnosis and treatment, knowledge service, literature reading, review and paper writing.

Search
Clear search
Close search
Google apps
Main menu