Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Do file and dataset for dominance analysis on US age at death distributions (data sourced from CDC life tables).
Abstract: Diverging mortality trends at different ages motivate the monitoring of lifespan inequality alongside life expectancy. Conclusions are ambiguous when life expectancy and lifespan inequality move in the same direction or when inequality measures display inconsistent trends. We propose using non-parametric dominance analysis to obtain a robust ranking of age-at-death distributions. Application to United States period life tables for 2006-2021 reveals that, until 2014, more recent years generally dominate earlier years implying improvement if longer lifespans that are less unequally distributed are considered better. Improvements were more pronounced for non-Hispanic Blacks and Hispanics than for non-Hispanic Whites. Since 2014, for all subpopulations—particularly, Hispanics—earlier years often dominate more recent years indicating worsening age-at-death distributions if shorter and more unequal lifespans are considered worse. Dramatic deterioration of the distributions in 2020-21 during the COVID-19 pandemic is most evident for Hispanics.
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Breakdown by race/ethnicity in pop-up: (This map has been updated with new data, so figures may vary from those in this image.)There are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Proven strategies to improve life expectancy and health in general A database of dozens of strategies can be found at County Health Rankings' What Works for Health site, sorted by Health Behaviors, Clinical Care, Social & Economic Factors, and Physical Environment. Policies and Programs listed here have been evaluated as to their effectiveness. For example, consumer-directed health plans received an evidence rating of "mixed evidence" whereas cultural competence training for health care professionals received a rating of "scientifically supported." Data from County Health Rankings (layer referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World.
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the 2020 County Health Rankings page about Life Expectancy:
Life Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.
Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.
What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.
Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.
Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]
Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World Happiness Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/unsdsn/world-happiness on 12 November 2021.
--- Dataset description provided by original source is as follows ---
The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
What countries or regions rank the highest in overall happiness and each of the six factors contributing to happiness? How did country ranks or scores change between the 2015 and 2016 as well as the 2016 and 2017 reports? Did any country experience a significant increase or decrease in happiness?
What is Dystopia?
Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom and least social support, it is referred to as “Dystopia,” in contrast to Utopia.
What are the residuals?
The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2014-2016 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.2 shows the average residual for each country when the equation in Table 2.1 is applied to average 2014- 2016 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.2, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.85 on the 0 to 10 scale.
What do the columns succeeding the Happiness Score(like Family, Generosity, etc.) describe?
The following columns: GDP per Capita, Family, Life Expectancy, Freedom, Generosity, Trust Government Corruption describe the extent to which these factors contribute in evaluating the happiness in each country. The Dystopia Residual metric actually is the Dystopia Happiness Score(1.85) + the Residual value or the unexplained value for each country as stated in the previous answer.
If you add all these factors up, you get the happiness score so it might be un-reliable to model them to predict Happiness Scores.
--- Original source retains full ownership of the source dataset ---
The Florida Department of Transportation (FDOT or Department) has identified processed, authoritative datasets to support the preliminary spatial analysis of equity considerations. These processed datasets are available at larger geographies, such as the United States Census Bureau tract or county-level; however, additional raw datasets from other sources can be used to identify equity considerations. Most of this raw data is available at the Census block group, parcel, or point-level—but additional processing is required to make suitable for spatial analysis. For more information, contact Dana Reiding with the FDOT Forecasting and Trends Office (FTO). The 2020 County Health Rankings layer is identified to support the equity community indicator of health. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. The rankings include measures of health factors (e.g., uninsured, child poverty, physical inactivity) and health outcomes (e.g., life expectancy, low birth weight). The layer is owned and managed by the ESRI Demographics Team. Data Link: https://www.arcgis.com/home/item.html?id=c514eddc6d584e85bc2f90be25305fc8 Available Geography Levels: Country, State, County Owner/Managed By: ESRI Demographics FDOT Point of Contact: Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World Happiness Report 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mathurinache/world-happiness-report-2021 on 24 September 2021.
--- Dataset description provided by original source is as follows ---
The World Happiness Report may be a point of interest survey of the state of worldwide bliss. The primary report was distributed in 2012, the second in 2013, the third in 2015, and the fourth within the 2016 Upgrade. The World Joy 2017, which positions 155 nations by their bliss levels, was discharged at the Joined together Countries at an occasion celebrating Universal Day of Joy on Walk 20th. The report proceeds to pick up worldwide acknowledgment as governments, organizations and respectful society progressively utilize joy pointers to educate their policy-making choices. Driving specialists over areas – financial matters, brain research, overview investigation, national insights, wellbeing, open approach and more – depict how estimations of well-being can be used effectively to evaluate the advance of countries. The reports survey the state of bliss within the world nowadays and appear how the modern science of bliss clarifies individual and national varieties in bliss.
The joy scores and rankings utilize information from the Gallup World Survey. The scores are based on answers to the most life evaluation address inquired within the survey. This address, known as the Cantril step, asks respondents to think of a step with the most excellent conceivable life for them being a 10 and the most exceedingly bad conceivable life being a and to rate their claim current lives on that scale. The scores are from broadly agent tests for the a long time 2013-2016 and utilize the Gallup weights to create the gauges agent. The columns taking after the bliss score assess the degree to which each of six variables – financial generation, social back, life anticipation, flexibility, nonattendance of debasement, and liberality – contribute to making life assessments higher in each nation than they are in Dystopia, a theoretical nation that has values rise to to the world’s least national midpoints for each of the six variables. They have no affect on the full score detailed for each nation, but they do exp
This file contains the Happiness Score for 153 countries along with the factors used to explain the score.
The Happiness Score is a national average of the responses to the main life evaluation question asked in the Gallup World Poll (GWP), which uses the Cantril Ladder.
The Happiness Score is explained by the following factors:
GDP per capita Healthy Life Expectancy Social support Freedom to make life choices Generosity Corruption Perception Residual error The data is described in much more detail here: link
I did not create this data, only sourced it. The credit goes to the original Authors:
Editors: John Helliwell, Richard Layard, Jeffrey D. Sachs, and Jan Emmanuel De Neve, Co-Editors; Lara Aknin, Haifang Huang and Shun Wang, Associate Editors; and Sharon Paculor, Production Editor
Citation: Helliwell, John F., Richard Layard, Jeffrey Sachs, and Jan-Emmanuel De Neve, eds. 2020. World Happiness Report 2020. New York: Sustainable Development Solutions Network
--- Original source retains full ownership of the source dataset ---
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Happiness Report may be a point of interest survey of the state of worldwide bliss. The primary report was distributed in 2012, the second in 2013, the third in 2015, and the fourth within the 2016 Upgrade. The World Joy 2017, which positions 155 nations by their bliss levels, was discharged at the Joined together Countries at an occasion celebrating Universal Day of Joy on Walk 20th. The report proceeds to pick up worldwide acknowledgment as governments, organizations and respectful society progressively utilize joy pointers to educate their policy-making choices. Driving specialists over areas – financial matters, brain research, overview investigation, national insights, wellbeing, open approach and more – depict how estimations of well-being can be used effectively to evaluate the advance of countries. The reports survey the state of bliss within the world nowadays and appear how the modern science of bliss clarifies individual and national varieties in bliss.
The joy scores and rankings utilize information from the Gallup World Survey. The scores are based on answers to the most life evaluation address inquired within the survey. This address, known as the Cantril step, asks respondents to think of a step with the most excellent conceivable life for them being a 10 and the most exceedingly bad conceivable life being a and to rate their claim current lives on that scale. The scores are from broadly agent tests for the a long time 2013-2016 and utilize the Gallup weights to create the gauges agent. The columns taking after the bliss score assess the degree to which each of six variables – financial generation, social back, life anticipation, flexibility, nonattendance of debasement, and liberality – contribute to making life assessments higher in each nation than they are in Dystopia, a theoretical nation that has values rise to to the world’s least national midpoints for each of the six variables. They have no affect on the full score detailed for each nation, but they do exp
This file contains the Happiness Score for 153 countries along with the factors used to explain the score.
The Happiness Score is a national average of the responses to the main life evaluation question asked in the Gallup World Poll (GWP), which uses the Cantril Ladder.
The Happiness Score is explained by the following factors:
GDP per capita Healthy Life Expectancy Social support Freedom to make life choices Generosity Corruption Perception Residual error The data is described in much more detail here: link
I did not create this data, only sourced it. The credit goes to the original Authors:
Editors: John Helliwell, Richard Layard, Jeffrey D. Sachs, and Jan Emmanuel De Neve, Co-Editors; Lara Aknin, Haifang Huang and Shun Wang, Associate Editors; and Sharon Paculor, Production Editor
Citation: Helliwell, John F., Richard Layard, Jeffrey Sachs, and Jan-Emmanuel De Neve, eds. 2020. World Happiness Report 2020. New York: Sustainable Development Solutions Network
This dataset is used from World Happiness Report .
Context The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
Content The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
Which factors make citizans of those countries happy?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘World Happiness Report 2015-2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mathurinache/world-happiness-report-20152021 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Context The World Happiness Report may be a point of interest survey of the state of worldwide bliss. The primary report was distributed in 2012, the second in 2013, the third in 2015, and the fourth within the 2016 Upgrade. The World Joy 2017, which positions 155 nations by their bliss levels, was discharged at the Joined together Countries at an occasion celebrating Universal Day of Joy on Walk 20th. The report proceeds to pick up worldwide acknowledgment as governments, organizations and respectful society progressively utilize joy pointers to educate their policy-making choices. Driving specialists over areas – financial matters, brain research, overview investigation, national insights, wellbeing, open approach and more – depict how estimations of well-being can be used effectively to evaluate the advance of countries. The reports survey the state of bliss within the world nowadays and appear how the modern science of bliss clarifies individual and national varieties in bliss.
Content The joy scores and rankings utilize information from the Gallup World Survey. The scores are based on answers to the most life evaluation address inquired within the survey. This address, known as the Cantril step, asks respondents to think of a step with the most excellent conceivable life for them being a 10 and the most exceedingly bad conceivable life being a and to rate their claim current lives on that scale. The scores are from broadly agent tests for the a long time 2013-2016 and utilize the Gallup weights to create the gauges agent. The columns taking after the bliss score assess the degree to which each of six variables – financial generation, social back, life anticipation, flexibility, nonattendance of debasement, and liberality – contribute to making life assessments higher in each nation than they are in Dystopia, a theoretical nation that has values rise to to the world’s least national midpoints for each of the six variables. They have no affect on the full score detailed for each nation, but they do exp
This file contains the Happiness Score for 153 countries along with the factors used to explain the score.
The Happiness Score is a national average of the responses to the main life evaluation question asked in the Gallup World Poll (GWP), which uses the Cantril Ladder.
The Happiness Score is explained by the following factors:
GDP per capita Healthy Life Expectancy Social support Freedom to make life choices Generosity Corruption Perception Residual error The data is described in much more detail here: link
Acknowledgements I did not create this data, only sourced it. The credit goes to the original Authors:
Editors: John Helliwell, Richard Layard, Jeffrey D. Sachs, and Jan Emmanuel De Neve, Co-Editors; Lara Aknin, Haifang Huang and Shun Wang, Associate Editors; and Sharon Paculor, Production Editor
Citation: Helliwell, John F., Richard Layard, Jeffrey Sachs, and Jan-Emmanuel De Neve, eds. 2020. World Happiness Report 2020. New York: Sustainable Development Solutions Network
--- Original source retains full ownership of the source dataset ---
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
What countries or regions rank the highest in overall happiness and each of the six factors contributing to happiness? How did country ranks or scores change between the 2015 and 2016 as well as the 2016 and 2017 reports? Did any country experience a significant increase or decrease in happiness?
What is Dystopia?
Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom and least social support, it is referred to as “Dystopia,” in contrast to Utopia.
What are the residuals?
The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2014-2016 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.2 shows the average residual for each country when the equation in Table 2.1 is applied to average 2014- 2016 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.2, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.85 on the 0 to 10 scale.
What do the columns succeeding the Happiness Score(like Family, Generosity, etc.) describe?
The following columns: GDP per Capita, Family, Life Expectancy, Freedom, Generosity, Trust Government Corruption describe the extent to which these factors contribute in evaluating the happiness in each country. The Dystopia Residual metric actually is the Dystopia Happiness Score(1.85) + the Residual value or the unexplained value for each country as stated in the previous answer.
If you add all these factors up, you get the happiness score so it might be un-reliable to model them to predict Happiness Scores.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The life-cycle age groups are:under 15 years15 to 29 years30 to 64 years65 years and over.Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.Subnational census usually resident populationThe census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Caution using time seriesTime series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).About the 2023 Census datasetFor information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data qualityThe quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Age concept quality ratingAge is rated as very high quality. Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for goodStats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".ConfidentialityThe 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Do file and dataset for dominance analysis on US age at death distributions (data sourced from CDC life tables).
Abstract: Diverging mortality trends at different ages motivate the monitoring of lifespan inequality alongside life expectancy. Conclusions are ambiguous when life expectancy and lifespan inequality move in the same direction or when inequality measures display inconsistent trends. We propose using non-parametric dominance analysis to obtain a robust ranking of age-at-death distributions. Application to United States period life tables for 2006-2021 reveals that, until 2014, more recent years generally dominate earlier years implying improvement if longer lifespans that are less unequally distributed are considered better. Improvements were more pronounced for non-Hispanic Blacks and Hispanics than for non-Hispanic Whites. Since 2014, for all subpopulations—particularly, Hispanics—earlier years often dominate more recent years indicating worsening age-at-death distributions if shorter and more unequal lifespans are considered worse. Dramatic deterioration of the distributions in 2020-21 during the COVID-19 pandemic is most evident for Hispanics.