8 datasets found
  1. 10 Minute Walk Access to Grocery Stores 2020

    • hub.arcgis.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). 10 Minute Walk Access to Grocery Stores 2020 [Dataset]. https://hub.arcgis.com/maps/6b1ab64abe4247f8bc80df784e89fbed
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows which parts of the United States and Puerto Rico fall within ten minutes' walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale.When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes' walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards.The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

  2. SafeGraph Grocery Stores

    • nv-thrive-data-hub-csustanislaus.hub.arcgis.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). SafeGraph Grocery Stores [Dataset]. https://nv-thrive-data-hub-csustanislaus.hub.arcgis.com/datasets/UrbanObservatory::safegraph-grocery-stores/about
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Description

    This layer shows which parts of the United States and Puerto Rico fall within ten minutes' walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale.When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes' walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards.The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

  3. w

    Gridded Soil Survey Geographic Database (gSSURGO), Minnesota

    • data.wu.ac.at
    • gisdata.mn.gov
    • +1more
    html, jpeg
    Updated Jan 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2016). Gridded Soil Survey Geographic Database (gSSURGO), Minnesota [Dataset]. https://data.wu.ac.at/odso/gisdata_mn_gov/ZDU4OTI0ZGYtNmIyMS00MTk2LTk2YTQtMzVhYzk0YWQzZTNl
    Explore at:
    html, jpegAvailable download formats
    Dataset updated
    Jan 26, 2016
    Dataset provided by
    Geospatial Information Office
    Area covered
    858b86b9f1de0e06f529917ebdc71502e4ce07f0
    Description

    The gSSURGO dataset provides detailed soil survey mapping in raster format with ready-to-map attributes organized in statewide tiles for desktop GIS. gSSURGO is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS).

    The gSSURGO data were prepared by merging the traditional vector-based SSURGO digital map data and tabular data into statewide extents, adding a statewide gridded map layer derived from the vector layer, and adding a new value-added look up table (valu) containing ready-to-map attributes. The gridded map layer is in an ArcGIS file geodatabase in raster format, thus it has the capacity to store significantly more data and greater spatial extents than the traditional SSURGO product. The raster map data have a 10-meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link the raster cells and polygons to attribute tables.

    For more information, see the gSSURGO webpage: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628

  4. gSSURGO Muaggat FY 2013

    • catalog.data.gov
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center (Point of Contact) (2024). gSSURGO Muaggat FY 2013 [Dataset]. https://catalog.data.gov/dataset/gssurgo-muaggat-fy-2013
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Description

    This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The recently released (2011) gSSURGO value added look up (valu) table (created by USDA-NRCS) contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.Summarized description of the Format and organization of SSURGO:Adjacent soil surveys may have been composed by different individuals, and may be of widely different vintages. Any given survey must comply with basic standards, but older surveys reflect a more generalized approach than more modern surveys. The figure to the right illustrates such differences.Polygons represent a repeating pattern of legend entries: groups of map-able soil concepts called map unitsMap unit data is stored in the mapunit table, and is referenced by the field mukeyPre-aggregated map unit data is stored in the muaggatt table, and is referenced by the field mukeyMap units are comprised of multiple, unmapped soil types called 'components'Component data is stored in the component table, and is referenced by the field cokeySoil components (or soil type) are associated with multiple horizonsHorizon data is stored in the chorizon table, and is referenced by the field cokeySince there is a 1:many:many (mapunit:component:horizon) relationship between spatial and horizon-level soil property data two aggregation steps are required in order to produce a thematic mapSource: http://casoilresource.lawr.ucdavis.edu/drupal/book/export/html/335Summary Descriptions of gSSURGO Soil Survey Attributes contained within the MUAGGATT table.MUAGGATT Table:Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth – MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency – MaximumPonding Frequency – PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class – WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification – PresenceRating for Manure and Food Processing Waste - Weighted Average

  5. gSSURGO Ready2map NE FY2013

    • catalog.data.gov
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center (Point of Contact) (2024). gSSURGO Ready2map NE FY2013 [Dataset]. https://catalog.data.gov/dataset/gssurgo-ready2map-ne-fy2013
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Description

    This dataset contains the common Map Unit attributes for each polygon within the gSSURGO database plus NRCS derived attributes from a data summary table called the National Valu Added Look Up (valu) Table #1. It is comprised of 57 pre-summarized or "ready to map" derived soil survey geographic database attributes including soil organic carbon, available water storage, crop productivity indices, crop root zone depths, available water storage within crop root zone depths, drought vulnerable soil landscapes, and potential wetland soil landscapes. Related metadata values for themes are included. These attribute data are pre-summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. These themes were prepared to better meet the mapping needs of users of soil survey information and can be used with both SSURGO and Gridded SSURGO (gSSURGO) datasets. Gridded SSURGO (gSSURGO) Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.VALU Table Content:The map unit average Soil Organic Carbon (SOC) values are given in units of g C per square meter for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), o-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average Available Water Storage (AWS) values are given in units of millimeters for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), 0-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average National Commodity Crop Productivity Index (NCCPI) values (low index values indicate low productivity and high index values indicate high productivity) are provided for major earthy components. NCCPI values are included for corn/soybeans, small grains, and cotton crops. Of these crops, the highest overall NCCPI value is also identified. Earthy components are those soil series or higher level taxa components that can support crop growth. Major components are those soil components where the majorcompflag = 'Yes' in the SSURGO component table. A map unit percent composition for earthy major components is provided. See Dobos, R. R., H. R. Sinclair, Jr, and M. P. Robotham. 2012. National Commodity Crop Productivity Index (NCCPI) User Guide, Version 2. USDA-NRCS. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdfThe map unit average root zone depth values for commodity crops are given in centimeters for major earthy components. Criteria for root-limiting soil depth include: presence of hard bedrock, soft bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less than 3.5, or a layer having an electrical conductivity of more than 12 within the component soil profile. If no root-restricting zone is identified, a depth of 150 cm is used to approximate the root zone depth (Dobos et al., 2012). The map unit average available water storage within the root zone depth for major earthy components value is given in millimeters.Drought vulnerable soil landscapes comprise those map units that have available water storage within the root zone for commodity crops that is less than or equal to 6 inches (152 mm) expressed as "1" for a drought vulnerable soil landscape map unit or "0" for a nondroughty soil landscape map unit or NULL for miscellaneous areas (includes water bodies).The potential wetland soil landscapes (PWSL version 1) information is given as the percentage of the map unit (all components) that meet the criteria for a potential wetland soil landscape. See table column (field) description for criteria details. If water was determined to account for 80 or greater percent of a map unit, a value of 999 was used to indicate a water body. This is not a perfect solution, but is helpful to identifying a general water body class for mapping.The map unit sum of the component percentage representative values is also provided as useful metadata. For all valu table columns, NULL values are presented where data are incomplete or not available. How NoData or NULL values and incomplete data were handled during VALU table SOC and AWS calculations:The gSSURGO calculations for SOC and AWS as reported in the VALU table use the following data checking and summarization rules. The guiding principle was to only use the official data in the SSURGO database, and not to make assumptions in case there were some data entry errors. However, there were a few exceptions to this principle if there was a good reason for a Null value in a critical variable, or to accommodate the data coding conventions used in some soil surveys.Horizon depths considerations:If the depth to the top of the surface horizon was missing, but otherwise the horizon depths were all okay, then the depth to the top of the surface horizon (hzdept_r) was set to zero.If the depth to the bottom of the last horizon was missing, and the horizon represented bedrock or had missing bulk density, the depth to the bottom was set to equal to the depth to the top of the same horizon (hzdepb_r = hzdept_r), effectively giving the horizon zero thickness (and thus zero SOC or AWS), but not blocking calculation of other horizons in the profile due to horizon depth errors.Other types of horizon depth errors were considered uncorrectable, and led to all horizon depths for the component being set to a NoData value, effectively eliminating the component from the analysis. The errors included gaps or overlaps in the horizon depths of the soil profile, other cases of missing data for horizon depths, including missing data for the bottom depth of the last horizon if the soil texture information did not indicate bedrock and a bulk density value was coded. The SOC or AWS values were effectively set to zero for components eliminated in this way, so the values at the map unit level could be an underestimate for some soils.Horizon rock fragment considerations:Part of the algorithm for calculating the SOC requires finding the volume of soil that is not rock. This requires three SSURGO variables that indicate rock fragments (fraggt10_r, frag3to10_r, and sieveno10_r). If the soil is not organic, and any of these are missing, then the ratio of the volume of soil fines to the total soil volume was set to “NoData†, and the SOC results were coded as “NoData†and effectively set to zero for the horizon. If the soil is organic, then it may be logical that no measurement of rock fragments was made, and default values for the “zero rock†situation was assumed for these variables (i.e., fraggt10_r = 0, frag3to10_r = 0, sieveno10_r = 100). Organic soils were identified by an “O†in the horizon designator or the texture code represented “Peat†, “Muck†or “Decomposed Plant Material†. If all three of the fragment variables were present, but indicated more than 100% rock, then 100% rock was assumed (zero volume of soil and thus zero for SOC). The rock fragment variables do not influence the AWS calculation because rock content is already accounted for in the available water capacity (awc_r) variable at the horizon level.Horizon to component summary:To summarize data from the horizon level to the component level, the evaluation proceeded downward from the surface. If a valid value for AWS could not be calculated for any horizon, then the result for that horizon and all deeper horizons was set to NoData. The same rule was separately applied to the SOC calculation, so it was possible to have results for SOC but not AWS, or vice versa.Component to mapunit summary:To summarize data from the component level to the map unit level, the component percentages must be valid. There are tests both of the individual component percentage (comppct_r) data, and also of the sum of the component percentages at the map unit level (mu_sum_comppct_r). For the gSSURGO VALU table, the following rules were applied for the individual components: 1) The comppct_r must be in the range from 0 to 100, inclusive. 2) Individual components with a comppct_r that was Null (nothing coded) were ignored. A zero comppct_r value excludes

  6. Grocery Access in the U.S. and Puerto Rico

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Grocery Access in the U.S. and Puerto Rico [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/maps/5ed03e000eae4540b07c8ac4a1bc501d
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Measure and Map Access to Grocery StoresFrom the perspective of the people living in each neighborhoodHow do people in your city get to the grocery store? The answer to that question depends on the person and where they live. This web map helps answer the question in this app.Some live in cities and stop by a grocery store within a short walk or bike ride of home or work. Others live in areas where car ownership is more prevalent, and so they drive to a store. Some do not own a vehicle, and rely on a friend or public transit. Others rely on grocery delivery for their needs. And, many live in rural areas far from town, so a trip to a grocery store is an infrequent event involving a long drive.This map from Esri shows which areas are within a ten minute walk or ten minute drive of a grocery store in the United States and Puerto Rico. Darker color indicates access to more stores. The chart shows how many people can walk to a grocery store if they wanted to or needed to.It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store.Look up your city to see how the numbers change as you move around the map. Or, draw a neighborhood boundary on the map to get numbers for that area.Every census block is scored with a count of walkable and drivable stores nearby, making this a map suitable for a dashboard for any city, or any of the 50 states, DC and Puerto Rico. Two colorful layers visualize this definition of access, one for walkable access (suitable for looking at a city neighborhood by neighborhood) and one for drivable access (suitable for looking across a city, county, region or state).On the walkable layer, shades of green define areas within a ten minute walk of one or more grocery stores. The colors become more intense and trend to a blue-green color for the busiest neighborhoods, such as downtown San Francisco. As you zoom in, a layer of Census block points visualizes the local population with or without walkable access.As you zoom out to see the entire city, the map adds a light blue - to dark blue layer, showing which parts of the region fall within ten minutes' drive of one or more grocery stores. As a result, the map is useful at all scales, from national to regional, state and local levels. It becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This MapUse this map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying.The map was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.There is data behind the map, which can be summarized to show how many people have walkable access to local grocery stores. The map includes a feature layer of population in Census block points, which are visible when you zoom in far enough. This feature layer can be plugged into an app like this one that summarizes the population with/without walkable or drivable access.Lastly, this map can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The map is a useful visual and analytic resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a

  7. a

    Township Tiling Index for King County Raster Data / idxptrmbr area

    • gis-kingcounty.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 1, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2003). Township Tiling Index for King County Raster Data / idxptrmbr area [Dataset]. https://gis-kingcounty.opendata.arcgis.com/datasets/township-tiling-index-for-king-county-raster-data-idxptrmbr-area
    Explore at:
    Dataset updated
    Jul 1, 2003
    Dataset authored and provided by
    King County
    Area covered
    Description

    A spatial tiling index designed for storage of file-based image and other raster (i.e., LiDAR elevation, landcover) data sets. An irregular grid of overlapping polygons, each enclosing its respective Public Land Survey System (PLSS) township in an orthogonal polygon minimally encompassing all portions of that township, i.e., minimum bounding rectangle. The amount of overlap between adjacent tiles varies depending on the geometry of the underlying township. Currently extended to include all townships within or partially within King County as well as those townships in the southwestern portion of Snohomish County included within King County's ESA/SAO project area. The name of the spatial index is derived from the acronym (I)n(D)e(X) (P)olygons for (T)ownship-(R)ange, (M)inimum (B)ounding (R)ectangle, or idxptrmbr. Tile label is the t(township number)r(range number)as in t24r02. The meridian zone identifiers, N for townships and E for range is inferred as this index is intended as a local index for ease of use by the majority of users of GIS data. Lowercase identifiers are used for consistency between Unix and Windows OS storage. This index or tile level is the primary user-access level for most LiDAR elevation, orthoimagery and high-resolution raster landcover data. However, not all image and raster data is stored at the tiling level if a given data's resolution does not justify storing the data as multiple tiles.

  8. a

    Townshp-Range Tiling Status for KC Raster Datasets / raststat trmbr area

    • gis-kingcounty.opendata.arcgis.com
    • king-snocoplanning.opendata.arcgis.com
    • +1more
    Updated Jul 1, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2003). Townshp-Range Tiling Status for KC Raster Datasets / raststat trmbr area [Dataset]. https://gis-kingcounty.opendata.arcgis.com/datasets/dbd9d81b9187458283409853552fb457
    Explore at:
    Dataset updated
    Jul 1, 2003
    Dataset authored and provided by
    King County
    Area covered
    Description

    A spatial tiling index designed for storage of file-based image and other raster (i.e., LiDAR elevation, landcover) data sets. An irregular grid of overlapping polygons, each enclosing its respective Public Land Survey System (PLSS) township in an orthogonal polygon minimally encompassing all portions of that township, i.e., minimum bounding rectangle. The amount of overlap between adjacent tiles varies depending on the geometry of the underlying township. Currently extended to include all townships within or partially within King County as well as those townships in the southwestern portion of Snohomish County included within King County's ESA/SAO project area. The name of the spatial index is derived from the acronym (I)n(D)e(X) (P)olygons for (T)ownship-(R)ange, (M)inimum (B)ounding (R)ectangle, or idxptrmbr. Tile label is the t(township number)r(range number)as in t24r02. The meridian zone identifiers, N for townships and E for range is inferred as this index is intended as a local index for ease of use by the majority of users of GIS data. Lowercase identifiers are used for consistency between Unix and Windows OS storage. This index or tile level is the primary user-access level for most LiDAR elevation, orthoimagery and high-resolution raster landcover data. However, not all image and raster data is stored at the tiling level if a given data's resolution does not justify storing the data as multiple tiles.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Urban Observatory by Esri (2021). 10 Minute Walk Access to Grocery Stores 2020 [Dataset]. https://hub.arcgis.com/maps/6b1ab64abe4247f8bc80df784e89fbed
Organization logo

10 Minute Walk Access to Grocery Stores 2020

Explore at:
Dataset updated
May 4, 2021
Dataset provided by
Esrihttp://esri.com/
Authors
Urban Observatory by Esri
Area covered
Description

This layer shows which parts of the United States and Puerto Rico fall within ten minutes' walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale.When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes' walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards.The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

Search
Clear search
Close search
Google apps
Main menu