https://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.
This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. For each subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included. The subjects are all right-handed and include both men and women. 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with mild to moderate Alzheimer’s disease. Another 14 subjects were characterized as nondemented at the time of their initial visit and were subsequently characterized as demented at a later visit.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
three of these models are available:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.
Factori's AI & ML training data is thoroughly tested and reviewed to ensure that what you receive on your end is of the best quality.
Integrate the comprehensive AI & ML training data provided by Grepsr and develop a superior AI & ML model.
Whether you're training algorithms for natural language processing, sentiment analysis, or any other AI application, we can deliver comprehensive datasets tailored to fuel your machine learning initiatives.
Enhanced Data Quality: We have rigorous data validation processes and also conduct quality assurance checks to guarantee the integrity and reliability of the training data for you to develop the AI & ML models.
Gain a competitive edge, drive innovation, and unlock new opportunities by leveraging the power of tailored Artificial Intelligence and Machine Learning training data with Factori.
We offer web activity data of users that are browsing popular websites around the world. This data can be used to analyze web behavior across the web and build highly accurate audience segments based on web activity for targeting ads based on interest categories and search/browsing intent.
Web Data Reach: Our reach data represents the total number of data counts available within various categories and comprises attributes such as Country, Anonymous ID, IP addresses, Search Query, and so on.
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly).
Data Attributes: Anonymous_id IDType Timestamp Estid Ip userAgent browserFamily deviceType Os Url_metadata_canonical_url Url_metadata_raw_query_params refDomain mappedEvent Channel searchQuery Ttd_id Adnxs_id Keywords Categories Entities Concepts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The AI training data market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the escalating demand for high-quality data to train sophisticated AI models, enabling improved accuracy and performance in applications like computer vision, natural language processing, and machine learning. The market size in 2025 is estimated at $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This significant growth trajectory is underpinned by several key factors: the proliferation of AI-powered applications across industries, advancements in AI algorithms requiring larger and more diverse datasets, and the rising availability of data annotation tools and platforms. However, challenges remain, including data privacy concerns, the high cost of data acquisition and annotation, and the need for skilled professionals to manage and curate these vast datasets. The market is segmented by data type (text, image, video, audio), application (autonomous vehicles, healthcare, finance), and region, with North America currently holding the largest market share due to early adoption of AI technologies and the presence of major technology companies. Key players in the market, such as Google (Kaggle), Amazon Web Services, Microsoft, and Appen Limited, are strategically investing in developing advanced data annotation tools and expanding their data acquisition capabilities to cater to this burgeoning demand. The competitive landscape is characterized by both established players and emerging startups, leading to innovation in data acquisition techniques, data quality control, and the development of specialized data annotation services. The future of the market is poised for further expansion, driven by the growing adoption of AI in emerging technologies like the metaverse and the Internet of Things (IoT), along with increasing government investments in AI research and development. Addressing data privacy concerns and fostering ethical data collection practices will be crucial to sustainable growth in the coming years. This will involve greater transparency and robust regulatory frameworks.
An extreme gradient boosting (XGB) machine learning model was developed to predict the distribution of nitrate in shallow groundwater across the conterminous United States (CONUS). Nitrate was predicted at a 1-square-kilometer (km) resolution at a depth below the water table of 10 m. The model builds off a previous XGB machine learning model developed to predict nitrate at domestic and public supply groundwater zones (Ransom and others, 2022) by incorporating additional monitoring well samples and modifying and adding predictor variables. The shallow zone model included variables representing well characteristics, hydrologic conditions, soil type, geology, climate, oxidation/reduction, and nitrogen inputs. Predictor variables derived from empirical or numerical process-based models were also included to integrate information on controlling processes and conditions. This data release documents the model and provides the model results. Included in this data release are, 1) a model archive of the R project: source code, input files (including model training and testing data, rasters of all final predictor variables, and an output raster representing predicted nitrate concentration in the shallow zone), 2) a read_me.txt file describing the model archive and an explanation of its use and the modeling details, and 3) a table describing the model variables.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and ...
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
US Deep Learning Market Size 2025-2029
The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.
The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights.
However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability.
What will be the Size of the market During the Forecast Period?
Request Free Sample
Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.
In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Image recognition
Voice recognition
Video surveillance and diagnostics
Data mining
Type
Software
Services
Hardware
End-user
Security
Automotive
Healthcare
Retail and commerce
Others
Geography
North America
US
By Application Insights
The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.
Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates the loss fu
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.
The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.
Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.
The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.
Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).
As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).
The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.
net traffic
This dataset contains model outputs that were analyzed to produce the main results of the paper.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global machine learning market is projected to witness a remarkable growth trajectory, with the market size estimated to reach USD 21.17 billion in 2023 and anticipated to expand to USD 209.91 billion by 2032, growing at a compound annual growth rate (CAGR) of 29.2% over the forecast period. This extraordinary growth is primarily propelled by the escalating demand for artificial intelligence-driven solutions across various industries. As businesses seek to leverage machine learning for improving operational efficiency, enhancing customer experience, and driving innovation, the market is poised to expand rapidly. Key factors contributing to this growth include advancements in data generation, increasing computational power, and the proliferation of big data analytics.
A pivotal growth factor for the machine learning market is the ongoing digital transformation across industries. Enterprises globally are increasingly adopting machine learning technologies to optimize their operations, streamline processes, and make data-driven decisions. The healthcare sector, for example, leverages machine learning for predictive analytics to improve patient outcomes, while the finance sector uses machine learning algorithms for fraud detection and risk assessment. The retail industry is also utilizing machine learning for personalized customer experiences and inventory management. The ability of machine learning to analyze vast amounts of data in real-time and provide actionable insights is fueling its adoption across various applications, thereby driving market growth.
Another significant growth driver is the increasing integration of machine learning with the Internet of Things (IoT). The convergence of these technologies enables the creation of smarter, more efficient systems that enhance operational performance and productivity. In manufacturing, for instance, IoT devices equipped with machine learning capabilities can predict equipment failures and optimize maintenance schedules, leading to reduced downtime and costs. Similarly, in the automotive industry, machine learning algorithms are employed in autonomous vehicles to process and analyze sensor data, improving navigation and safety. The synergistic relationship between machine learning and IoT is expected to further propel market expansion during the forecast period.
Moreover, the rising investments in AI research and development by both public and private sectors are accelerating the advancement and adoption of machine learning technologies. Governments worldwide are recognizing the potential of AI and machine learning to transform industries, leading to increased funding for research initiatives and innovation centers. Companies are also investing heavily in developing cutting-edge machine learning solutions to maintain a competitive edge. This robust investment landscape is fostering an environment conducive to technological breakthroughs, thereby contributing to the growth of the machine learning market.
Supervised Learning, a subset of machine learning, plays a crucial role in the advancement of AI-driven solutions. It involves training algorithms on a labeled dataset, allowing the model to learn and make predictions or decisions based on new, unseen data. This approach is particularly beneficial in applications where the desired output is known, such as in classification or regression tasks. For instance, in the healthcare sector, supervised learning algorithms are employed to analyze patient data and predict health outcomes, thereby enhancing diagnostic accuracy and treatment efficacy. Similarly, in finance, these algorithms are used for credit scoring and fraud detection, providing financial institutions with reliable tools for risk assessment. As the demand for precise and efficient AI applications grows, the significance of supervised learning in driving innovation and operational excellence across industries becomes increasingly evident.
From a regional perspective, North America holds a dominant position in the machine learning market due to the early adoption of advanced technologies and the presence of major technology companies. The region's strong focus on R&D and innovation, coupled with a well-established IT infrastructure, further supports market growth. In addition, Asia Pacific is emerging as a lucrative market for machine learning, driven by rapid industrialization, increasing digitalization, and government initiatives promoting AI adoption. The region is witnessing significant investments in AI technologies, particu
Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to be included as explanatory variables. The ML approach integrated output from a groundwater-flow model and water-quality data to predict salinity, and the approach can be applied to other aquifers to provide context for the long-term availability of groundwater resources. The Mississippi embayment includes two principal regional aquifer systems; the surficial aquifer system, dominated by the Quaternary Mississippi River Valley Alluvial aquifer (MRVA), and the Mississippi embayment aquifer system, which includes deeper Tertiary aquifers and confining units. Based on the distribution of groundwater use for drinking water, the modeling focused on the MRVA, middle Claiborne aquifer (MCAQ), and lower Claiborne aquifer (LCAQ). Boosted regression tree (BRT) models (Elith and others, 2008; Kuhn and Johnson, 2013) were developed to predict SC and Cl to 1-kilometer (km) raster grid cells of the National Hydrologic Grid (Clark and others, 2018) for 7 aquifer layers (1 MRVA, 4 MCAQ, 2 LCAQ) following the hydrogeologic framework of Hart and others (2008). TDS maps were created using the correlation between SC and TDS. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as soils and land use), and variables extracted from a MODFLOW groundwater flow model for the Mississippi embayment (Haugh and others, 2020a; Haugh and others, 2020b). Prediction intervals were calculated for SC and Cl by bootstrapping raster-cell predictions following methods from Ransom and others (2017). For a full description of modeling workflow and final model selection see Knierim and others (2020).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MLFMF (Machine Learning for Mathematical Formalization) is a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction.
The MLFMF data sets provide solid benchmarking support for further investigation of the numerous machine learning approaches to formalized mathematics. With more than 250,000 entries in total, this is currently the largest collection of formalized mathematical knowledge in machine learnable format.
In addition to benchmarking the recommendation systems, the data sets can also be used for benchmarking node classification and link prediction algorithms.
Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes
Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of syntax trees of all the entries in the library. The network contains the (modular) structure of the library and the references between entries, while the syntax trees give complete and easily parsed information about each entry.
The Lean library data set was obtained by converting .olean files into s-expressions (see the lean2sexp tool).
The Agda data sets were obtained with an s-expression extension of the official Agda repository (use either master-sexp or release-2.6.3-sexp branch).
For more details, see our arXiv copy of the paper.
First, the mlfmf.zip archive needs to be unzipped. It contains a separate directory for every library (for example, the standard library of Agda can be found in the stdlib directory) and some auxiliary files. Every library directory contains
In addition to the auxiliary files which are used for loading the data (and described below), the zipped sources of lean2sexp and Agda s-expression extension are present.
In addition to the data files, there is also a simple python script main.py for loading the data. To run it, you will have to install the packages listed in the file requirements.txt: tqdm and networkx. The easiest way to do so is calling pip install -r requirements.txt.
When running main.py for the first time, the script will unzip the entry files into the directory named entries. After that, the script loads the syntax trees of the entries (see the Entry class) and the network (as networkx.MultiDiGraph object).
Note. The entry files have extension .dag (directed acyclic graph), since Lean uses node sharing, which breaks the tree structure (a shared node has more than one parent node).
For more information about the data collection process, detailed data (and data format) description, and baseline experiments that were already performed with these data, see our arXiv copy of the paper.
For the code that was used to perform the experiments and data format description, visit our github repository https://github.com/ul-fmf/mlfmf-data.
Since not all the funders are available in the Zenodo's database, we list them here:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a publicly available dataset containing soil data and random forest model code for research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.