Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quantitative analysis of adolescent exposure to fast food marketing on Instagram. Descriptive statistics were calculated and the total frequency of each marketing strategy was obtained. For the continuous variables mean and standard deviation values were obtained. Mann-Whitney U tests were conducted to examine the association between the marketing strategies and user engagement, while the Kruskal-Wallis H test was completed to test for associations between brand name and engagement.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SPSS Data sets for study 1 to 3
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Archive of datasets for SPSS Companion to Political Analysis, 6th Edition (published by CQ/Sage in 2019). There are four datasets: GSS, NES, States, and World. Use these datasets to replicate demonstration examples from the book, chapter exercises, and tutorial videos. The "student versions" of the datasets are small versions of the datasets with limited number of observations and variables. These versions were necessary for compatibility with a Student Version of the SPSS Program that shipped with the textbook when it was published.
This site contains a series of SPSS assignments, which will take you from the basics of opening data files to the complexities of creating a professional conference poster. These assignments use real data that were collected at the University of Nevada, Las Vegas. Each assignment has two parts: the first includes step-by-step instructions and the second provides extra practice. In later assignments, you will re-use the skills you learned in earlier assignments. After completing these assignments, you will be better prepared for the rigors of the workplace and for graduate-level research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is Data analysis with SPSS : a first course in applied statistics. It features 7 columns including author, publication date, language, and book publisher.
The OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SPSS data sets of all quantitative data (including coded categories from qualitative analyses of interview transcripts) for Studies 1 to 4. Researchers interested in re-analyzing the interview transcripts (which are also in German) should get in touch with the corresponding author (judith.glueck@aau.at).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data files to be used in teaching Research Methods (MAPSYK302) at the University of Bergen - Spring 2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is based on factor analysis of newly developed tool for professionalism assessment
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data collected from U.S. workers. Survey delivered and sample obtained using Prolific (https://www.prolific.co/), with a sample representative of the U.S. population across age, gender and ethnicity. The high performance cycle questionnaire was developed by Borgogni and Dello Russo (2012). A self-report questionnaire developed by Onwezen, van Veldhoven and Biron (2014) was used to assess job performance. Data was transferred to SPSS AMOS for structural equation modeling analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is SPSS for introductory statistics : use and interpretation. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SPSS Data Sets Study 1 & 2(Glück, J. & Scherpf, A. (2022). Intelligence and wisdom: Age-Related Differences and Nonlinear Relationships. Manuscript submitted for publication (copy on file with author).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set is the data acquired through a survey among chatbot users of online travel agencies (OTAs) in India.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GENERAL INFORMATION
Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation
Date of data collection: January to March 2022
Collection instrument: SurveyMonkey
Funding: Alfred P. Sloan Foundation
SHARING/ACCESS INFORMATION
Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license
Links to publications that cite or use the data:
Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437
Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
A survey investigating disciplinary differences in data citation. Zenodo. https://doi.org/10.5281/zenodo.7555266
DATA & FILE OVERVIEW
File List
Additional related data collected that was not included in the current data package: Open ended questions asked to respondents
METHODOLOGICAL INFORMATION
Description of methods used for collection/generation of data:
The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.
Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).
Methods for processing the data:
Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.
Instrument- or software-specific information needed to interpret the data:
The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.
DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata
Number of variables: 95
Number of cases/rows: 2,492
Missing data codes: 999 Not asked
Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.
https://doi.org/10.23668/psycharchives.4988https://doi.org/10.23668/psycharchives.4988
Citizen Science (CS) projects play a crucial role in engaging citizens in conservation efforts. While implicitly mostly considered as an outcome of CS participation, citizens may also have a certain attitude toward engagement in CS when starting to participate in a CS project. Moreover, there is a lack of CS studies that consider changes over longer periods of time. Therefore, this research presents two-wave data from four field studies of a CS project about urban wildlife ecology using cross-lagged panel analyses. We investigated the influence of attitudes toward engagement in CS on self-related, ecology-related, and motivation-related outcomes. We found that positive attitudes toward engagement in CS at the beginning of the CS project had positive influences on participants’ psychological ownership and pride in their participation, their attitudes toward and enthusiasm about wildlife, and their internal and external motivation two months later. We discuss the implications for CS research and practice. Dataset for: Greving, H., Bruckermann, T., Schumann, A., Stillfried, M., Börner, K., Hagen, R., Kimmig, S. E., Brandt, M., & Kimmerle, J. (2023). Attitudes Toward Engagement in Citizen Science Increase Self-Related, Ecology-Related, and Motivation-Related Outcomes in an Urban Wildlife Project. BioScience, 73(3), 206–219. https://doi.org/10.1093/biosci/biad003: Analysis script (SPSS format) used on the data of all field studies
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data from study investigating the preferences of the adult Danish population for five specific protective features of AI systems and implementation across a range of eight different use cases in the public and commercial sectors ranging from medical diagnostics to the issuance of parking tickets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset analysis regarding our previous research and the current research. it is the result of our observations over 3 years of monitoring and is provided briefly within our 1st publication: https://doi.org/10.5281/zenodo.10407923.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
In this study, 403 Chinese consumers generalizable to the broader population were surveyed on their motivations to shop for fashion apparel in both high street and e-commerce environments. Statistical analysis was undertaken through multiple T-Tests and MANOVA with the assistance of SPSS and G*Power.
To increase the profits of international brands, this paper presents the motivations of Chinese consumers to engage in fashion retail, building upon established theory in hedonic and utilitarian motivations. With China set to capture over 24% of the $212 billion fashion market, international brands need to understand the unique motivations of Chinese consumers in order to capitalise on the market. However, the motivations of Chinese people to engage in fashion retail are as yet undefined, limiting the ability for international fashion retailers to operate with prosperity in the Chinese market.
General information: The data sets contain information on how often materials of studies available through GESIS: Data Archive for the Social Sciences were downloaded and/or ordered through one of the archive´s plattforms/services between 2004 and 2017.
Sources and plattforms: Study materials are accessible through various GESIS plattforms and services: Data Catalogue (DBK), histat, datorium, data service (and others).
Years available: - Data Catalogue: 2012-2017 - data service: 2006-2017 - datorium: 2014-2017 - histat: 2004-2017
Data sets: Data set ZA6899_Datasets_only_all_sources contains information on how often data files such as those with dta- (Stata) or sav- (SPSS) extension have been downloaded. Identification of data files is handled semi-automatically (depending on the plattform/serice). Multiple downloads of one file by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.
Data set ZA6899_Doc_and_Data_all_sources contains information on how often study materials have been downloaded. Multiple downloads of any file of the same study by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.
Both data sets are available in three formats: csv (quoted, semicolon-separated), dta (Stata v13, labeled) and sav (SPSS, labeled). All formats contain identical information.
Variables: Variables/columns in both data sets are identical. za_nr ´Archive study number´ version ´GESIS Archiv Version´ doi ´Digital Object Identifier´ StudyNo ´Study number of respective study´ Title ´English study title´ Title_DE ´German study title´ Access ´Access category (0, A, B, C, D, E)´ PubYear ´Publication year of last version of the study´ inZACAT ´Study is currently also available via ZACAT´ inHISTAT ´Study is currently also available via HISTAT´ inDownloads ´There are currently data files available for download for this study in DBK or datorium´ Total ´All downloads combined´ downloads_2004 ´downloads/orders from all sources combined in 2004´ [up to ...] downloads_2017 ´downloads/orders from all sources combined in 2017´ d_2004_dbk ´downloads from source dbk in 2004´ [up to ...] d_2017_dbk ´downloads from source dbk in 2017´ d_2004_histat ´downloads from source histat in 2004´ [up to ...] d_2017_histat ´downloads from source histat in 2017´ d_2004_dataservice ´downloads/orders from source dataservice in 2004´ [up to ...] d_2017_dataservice ´downloads/orders from source dataservice in 2017´
More information is available within the codebook.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quantitative analysis of adolescent exposure to fast food marketing on Instagram. Descriptive statistics were calculated and the total frequency of each marketing strategy was obtained. For the continuous variables mean and standard deviation values were obtained. Mann-Whitney U tests were conducted to examine the association between the marketing strategies and user engagement, while the Kruskal-Wallis H test was completed to test for associations between brand name and engagement.