Geographic Information Systems (GIS) technology allows users to make maps and analyze data. Savvy educators have been using GIS since the early 1990s, but online GIS makes it easy for educators to get started quickly, even just learning on their own, online. Here is a sequenced set of resources and activities with which to begin; they start fast and easy, scaffold ideas and skills, and generally take more time and require more background as one progresses, so items should be experienced in order.
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.
Needing to answer the question of “where” sat at the forefront of everyone’s mind, and using a geographic information system (GIS) for real-time surveillance transformed possibly overwhelming data into location intelligence that provided agencies and civic leaders with valuable insights.This book highlights best practices, key GIS capabilities, and lessons learned during the COVID-19 response that can help communities prepare for the next crisis.GIS has empowered:Organizations to use human mobility data to estimate the adherence to social distancing guidelinesCommunities to monitor their health care systems’ capacity through spatially enabled surge toolsGovernments to use location-allocation methods to site new resources (i.e., testing sites and augmented care sites) in ways that account for at-risk and vulnerable populationsCommunities to use maps and spatial analysis to review case trends at local levels to support reopening of economiesOrganizations to think spatially as they consider “back-to-the-workplace” plans that account for physical distancing and employee safety needsLearning from COVID-19 also includes a “next steps” section that provides ideas, strategies, tools, and actions to help jump-start your own use of GIS, either as a citizen scientist or a health professional. A collection of online resources, including additional stories, videos, new ideas and concepts, and downloadable tools and content, complements this book.Now is the time to use science and data to make informed decisions for our future, and this book shows us how we can do it.Dr. Este GeraghtyDr. Este Geraghty is the chief medical officer and health solutions director at Esri where she leads business development for the Health and Human Services sector.Matt ArtzMatt Artz is a content strategist for Esri Press. He brings a wide breadth of experience in environmental science, technology, and marketing.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.
I’d love to begin by saying that I have not “arrived” as I believe I am still on a journey of self-discovery. I have heard people say that they find my journey quite interesting and I hope my story inspires someone out there.I had my first encounter with Geographic Information System (GIS) in the third year of my undergraduate study in Geography at the University of Ibadan, Oyo State Nigeria. I was opportune to be introduced to the essentials of GIS by one of the prominent Environmental and Urban Geographers in person of Dr O.J Taiwo. Even though the whole syllabus and teaching sounded abstract to me due to the little exposure to a practical hands-on approach to GIS software, I developed a keen interest in the theoretical learning and I ended up scoring 70% in my final course exam.
This dataset provides shapefile of outlines of the 68 lakes where temperature was modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information System (GIS) Services market is experiencing robust growth, driven by increasing adoption across various sectors. While the provided data lacks specific market size figures, based on industry reports and observed trends in related technology sectors, we can estimate a 2025 market size of approximately $15 billion USD. This reflects the significant investments being made in spatial data infrastructure and the growing demand for location-based analytics. Assuming a Compound Annual Growth Rate (CAGR) of 8%, the market is projected to reach roughly $25 billion by 2033. Key drivers include the rising need for precise mapping and location intelligence in environmental management, urban planning, and resource optimization. Furthermore, advancements in cloud-based GIS platforms, the increasing availability of big data, and the development of sophisticated geospatial analytics tools are fueling market expansion. The market is segmented by service type (Analyze, Visualize, Manage, Others) and application (primarily Environmental Agencies, but also extending to various sectors such as utilities, transportation, and healthcare). North America currently holds a significant market share due to early adoption and advanced technological infrastructure. However, regions like Asia-Pacific are demonstrating rapid growth, driven by increasing urbanization and infrastructure development. While the lack of readily available detailed market figures presents a challenge for complete precision in projection, the overall trend points to a considerable expansion of the GIS services sector over the forecast period. The competitive landscape is characterized by a mix of large multinational corporations like Infosys and Intellias and smaller, specialized firms like EnviroScience and R&K Solutions, reflecting the diverse needs of the market. These companies compete based on their technological capabilities, industry expertise, and geographical reach. The ongoing integration of GIS with other technologies, such as artificial intelligence (AI) and machine learning (ML), will further shape the market landscape, creating opportunities for innovation and differentiation. Challenges include the high initial investment costs associated with implementing GIS solutions and the need for skilled professionals to effectively utilize these technologies. However, the long-term benefits of improved decision-making and operational efficiency are driving wider adoption despite these hurdles. The future growth of the GIS services market hinges on the continued development of innovative technologies and the increasing awareness of the value that location-based insights provide across various industries.
This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
In a GIS, the answer starts with a geographic coordinate system. Learn the fundamental concepts of geographic coordinate systems.Exercises can be completed with either ArcGIS Pro or ArcMap.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What do you need to do with your GIS data? Do you need to create earthquake hazard maps, find a location for your new business, or locate municipal utility lines? Perhaps you need to integrate your organization's data into a single system that will streamline resource management.At the core of all these projects lies the need to represent and store data in a way that supports meaningful, accurate analysis and organizational workflows. The geodatabase is the native data storage format for ArcGIS. It offers many advantages for modeling, analyzing, managing, and maintaining GIS data.With a geodatabase, you can create GIS features that mimic real-world feature behavior, apply sophisticated rules and relationships between features, and access all of your data from a centralized location. This course introduces the basic components of the geodatabase that will allow you to begin organizing your data to meet your GIS project needs.After completing this course, you will be able to:Describe the components of the geodatabase.Create geodatabase schema.Design and create a geodatabase.
Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.
This is a coverage of the boundaries and codes used for the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program Study-Unit investigations for the conterminous United States, excluding the High Plains Regional Ground-Water Study.
The National Water-Quality Assessment Program is designed to describe the status and trends in the quality of the Nation's ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources (Leahy and others, 1990). A "Study Unit" is a major hydrologic system in which NAWQA studies are focused. Study Units are geographically defined by a combination of ground- and surface-water features (Gilliom and others, 1995).
As part of the NAWQA program, Study-Unit investigations were planned for 60 areas throughout the Nation to provide a framework for national and regional water-quality assessments (Leahy and others, 1990). The 60 planned Study-Units were divided into three groups of 20. Each group would be intensively studied on a rotational basis with 20 studies beginning in fiscal year 1991 (FY 1991 runs from October 1990-September 1991), 20 more studies beginning in fiscal year 1994 (October 1993-September 1994), and the final 20 studies beginning in fiscal year 1997 (October 1996-September 1997). Each study cycle would span 10 years. In 1996, the number of Study-Units was scaled back to 59 when two of the original 60 Study Units combined. Also, because of budgetary restraints, some of the original planned Study Units have been scheduled to start later than originally planned and others have not even been scheduled to start yet.
This coverage contains the boundaries for the 57 Study Units within the conterminous United States, excluding the High Plains Regional Ground Water-Study, which was conceived in late 1997. The coverage also includes the name, starting date, and NAWQA standard abbreviation of each Study Unit plus various codes to help display the data. This data set is used primarily to display the location of NAWQA Study Units and for analysis of data at the national scale. It is not recommended for either local or regional analysis due to the small scale of most of the features.
This coverage can be used in conjunction with other NAWQA datasets including the point coverage of NAWQA Trace Element Sampling Sites (NAWQA_TE) and the point coverage of NAWQA Nutrients Sampling Sites (NAWQA_NU). Detailed information on these two coverages can be found in their respective metadata.
Originally, Study-Unit boundaries in this coverage were composed of 1: 2,000,000-scale hydrologic unit boundaries (Allord, 1992) and state boundaries (Negri, 1994). As the NAWQA project has progressed and Study-Unit Investigations have gotten underway, many Study-Unit boundaries have been modified. In addition, Study Units have enhanced their boundary coverages with features at higher resolutions. As these modifications are made, Study Units submit their new boundary coverages to National Synthesis teams, who are responsible for summarizing the results from all of the Study Units, and the changes are incorporated into this coverage. As a result, this coverage is composed of linear features at various scales (for example, 1: 100,000, 1: 250,000), but the majority remain at the 1: 2,000,000 scale.
The original version of this coverage was generated by the the USGS Cartographic and Publishing Program (CAPP) in Madison, Wisconsin, in the fall of 1991. The procedures used to create this coverage are described below. Each NAWQA Study Unit was asked for a description of their boundary definition. Once this information was gathered, CAPP created the coverage by extracting digital features from the 1: 2,000,000 Hydrologic Unit boundaries coverage and the 1: 2,000,000 state boundaries coverage. Since the majority of Study-Unit boundaries are defined from hydrologic unit boundaries, most of the features were directly copied from the Hydrologic Units coverage. An exception to this was the boundary defining the Georgia-Florida Coastal Plain Study Unit where the northern boundary was defined by the northern edge of the Florida Aquifer. To incorporate this boundary into the coverage, the aquifer boundary was digitized from the U.S. Geological Survey's "Ground-Water Atlas of the United States", HA-730 (G) (Miller, 1990). In November 1991, responsibility for maintaining the coverage was transferred to NAWQA's National Synthesis staff. Major milestones in the development of the coverage and various revisions to the coverage are listed under the Lineage section.
The NAWQA Program has used the coverage for various analyses and displays and for various published reports, for example, Leahy and Thompson (1994) and Gilliom and others (1995).
The coverage is reviewed by one of the NAWQA National Synthesis GIS staff members prior to release. Related_Spatial_and_Tabular_Data_Sets:
Alaska (Cook Inlet) and Hawaii (Oahu) NAWQA Study-Unit boundaries are maintained in separate data sets.
The High Plains Regional Ground-Water Study boundary is in a separate data set.
Cook, Oahu, and High Plains study boundaries should be used with this data set to give the full picture of NAWQA Study Units nationwide.
[Summary provided by EPA]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kuwait's arid desert landscape, geological formations, and extreme climate conditions make it a potential site for establishing a terrestrial Mars analog, as this research presents a new GIS-based methodology. The Analog Conjunctive Method (ACM) was specifically developed to identify a suitable location in Kuwait to hold a terrestrial Mars analog using a geographic information system (GIS) and remote sensing techniques. Analogs play a crucial role in simulating different Martian conditions, supporting astronaut training, testing various exploration technologies, and doing different types of scientific research on these environments. The ACM method integrates GIS and remote sensing techniques to evaluate the study area, resulting in potential sites for analog. The analysis employs two stages to finalize the best location. In stage one, the newly developed ACM is applied; it systematically eliminates unstable areas while allowing minimal flexibility for real-world environmental adjustment, particularly in regions with natural wind barriers. ACM is used to process the buffers created for the seven criteria (urban areas and farms, coastal areas, streets, airports, oil fields, natural reserves, and country borders) in QGIS to exclude unsuitable areas. Stage two screens the stage one map locations using different data (STRM, Copernicus sentinel-2, and field visits) to polish the selection based on other criteria (water bodies, dust rate, vegetation cover, and topography). The result shows nine locations in Jal Al-Zor as potential analog sites where a random location is selected for a 3D model creation to visualize the analog. Java Mission-planning and Analysis for Remote Sensing (JMARS) software was used to identify similarities between specific areas, such as the Jal Al-Zor escarpment and Huwaimllyah sand dunes in the Kuwait desert, and comparable terrains on Mars. The research concluded that Jal Al-Zor holds substantial potential as a terrestrial Mars analog site due to its geological and topographical similarities to Martian landscapes. This makes it an ideal location for crew training, Mars equipment testing, and further research in Mars analog studies, providing valuable insights for future planetary exploration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The temple gardens are an important human landscape and have an important position in the Chinese garden system. Using GIS analysis tools, primarily the Nearest Neighbor Index, Kernel Density Estimation, and Spatial Autocorrelation, and employing a Geographic Detector model, we analyzed the spatial distribution characteristics and influencing factors of 4,317 temples and gardens in Jiangxi Province. Research shows that: 1) The spatial distribution type of temple gardens in Jiangxi Province is agglomeration type, with large spatial differences in distribution, forming a spatial distribution pattern of “generally dispersed and concentrated in some areas”; 2) the distribution of temple gardens in Jiangxi Province is uneven. They are mostly distributed in five prefecture-level cities: Ganzhou, Jiujiang, Shangrao, Fuzhou, and Nanchang; 3) The overall spatial distribution of temple gardens in Jiangxi Province has positive autocorrelation characteristics, and prefecture-level cities have significant proximity characteristics, forming a “high-high” “agglomeration” and “low-low agglomeration” distribution patterns; 4) Temple gardens in various regions are affected by geomorphological factors, and are mostly concentrated in the lower altitude range of 0–500 m and the gentle slope of 0°–30°. Most of the distribution density of temple gardens in various prefecture-level cities is within the buffer zone distance of the road network within the range of 0–1.5 km. 5) Economic, cultural, demographic, and historical factors have affected the development of temple gardens. Areas with more active economies have a denser number of temple gardens. The unique regional culture affects the distribution of temples and gardens in different regions. In places where the modern population is densely distributed, there are fewer temples and gardens, while in places where the population is less densely distributed, there are more temples and gardens. 6) The use of geographical detectors to detect influencing factors shows that the greatest impact on the spatial distribution of temple gardens in Jiangxi Province is the road network, followed by elevation, slope, GDP, and water systems. The research is conducive to scientific understanding of the distribution of temple gardens among prefecture-level cities in Jiangxi Province, and provides reference for strengthening the protection of temple gardens and exploring the tourism characteristics of temple gardens.
Geographic Information Systems (GIS) technology allows users to make maps and analyze data. Savvy educators have been using GIS since the early 1990s, but online GIS makes it easy for educators to get started quickly, even just learning on their own, online. Here is a sequenced set of resources and activities with which to begin; they start fast and easy, scaffold ideas and skills, and generally take more time and require more background as one progresses, so items should be experienced in order.