4 datasets found
  1. c

    Poverty Status by Town - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.

  2. U.S. poverty rate 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  3. Additional resources for Kiva Crowdfunding

    • kaggle.com
    zip
    Updated Apr 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luke (2018). Additional resources for Kiva Crowdfunding [Dataset]. https://www.kaggle.com/forums/f/26443/additional-resources-for-kiva-crowdfunding/t/54374/dataset-suggestion
    Explore at:
    zip(104671314 bytes)Available download formats
    Dataset updated
    Apr 12, 2018
    Authors
    Luke
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset contains the locations found in the Kiva datasets included in an administrative or geographical region. You can also find poverty data about this region. This facilitates answering some of the tough questions about a region's poverty.

    Content

    In the interest of preserving the original names and spelling for the locations/countries/regions all the data is in Excel format and has no preview (I think only the Kaggle recommended file types have preview - if anyone can show me how to do this for an xlsx file, it will be greatly appreciated)

    The Tables datasets contain the most recent analysis of the MPI on countries and regions. These datasets are updated regularly. In unique regions_names_from_google_api you will find 3 levels of inclusion for every geocode provided in Kiva datasets. (village/town, administrative region, sub-national region - which can be administrative or geographical). These are the results from the Google API Geocoding process.

    Files:

    • all_kiva_loans.csv

    Dropped multiple columns, kept all the rows from loans.csv with names, tags, descriptions and got a csv file of 390MB instead of 2.13 GB. Basically is a simplified version of loans.csv (originally included in the analysis by beluga)

    • country_stats.csv
    1. population source: https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)
    2. population_below_poverty_line: Percentage
    3. hdi: Human Development Index
    4. life_expectancy: Life expectancy at birth
    5. expected_years_of_schooling: Expected years of schooling
    6. mean_years_of_schooling: Mean years of schooling
    7. gni: Gross national income (GNI) per capita This dataset was originally created by beluga.
    • all_loan_theme_merged_with_geo_mpi_regions.xlsx

    This is the loan_themes_by_region left joined with Tables_5.3_Contribution_of_Deprivations. (all the original entries from loan_themes and only the entries that match from Tables_5; for the regions that lack MPI data, you will find Nan)

    These are the columns in the database:

    1. Partner ID
    2. Field Partner
    3. Name
    4. sector
    5. Loan Theme ID
    6. Loan Theme Type
    7. Country
    8. forkiva
    9. number
    10. amount
    11. geo
    12. rural_pct
    13. City
    14. Administrative region
    15. Sub-national region
    16. ISO
    17. World region
    18. Population Share of the Region (%)
    19. region MPI
    20. Education (%)
    21. Health (%)
    22. Living standards (%)
    23. Schooling (%)
    24. Child school attendance (%)
    25. Child Mortality (%)
    26. Nutrition (%)
    27. Electricity (%)
    28. Improved sanitation (%)
    29. Drinking water (%)
    30. Floor (%)
    31. Cooking fuel (%)
    32. Asset ownership (%)
    • mpi_on_regions.xlsx

    Matched the loans in loan_themes_by_region with the regions that have info regarding MPI. This dataset brings together the amount invested in a region and the biggest problems the said region has to deal with. It is a join between the loan_themes_by_region provided by Kiva and Tables 5.3 Contribution_of_Deprivations.

    It is a subset of the all_loan_theme_merged_with_geo_mpi_regions.xlsx, which contains only the entries that I could match with poverty decomposition data. It has the same columns.

    • Tables_5_SubNational_Decomposition_MPI_2017-18.xlsx

    Multidimensional poverty index decomposition for over 1000 regions part of 79 countries.

    Table 5.3: Contribution of deprivations to the MPI, by sub-national regions
    This table shows which dimensions and indicators contribute most to a region's MPI, which is useful for understanding the major source(s) of deprivation in a sub-national region.

    Source: http://ophi.org.uk/multidimensional-poverty-index/global-mpi-2016/

    • Tables_7_MPI_estimations_country_levels.xlsx

    MPI decomposition for 120 countries.

    Table 7 All Published MPI Results since 2010
    The table presents an archive of all MPI estimations published over the past 5 years, together with MPI, H, A and censored headcount ratios. For comparisons over time please use Table 6, which is strictly harmonised. The full set of data tables for each year published (Column A), is found on the 'data tables' page under 'Archive'.

    The data in this file is shown in interactive plots on Oxford Poverty and Human Development Initiative website. http://www.dataforall.org/dashboard/ophi/index.php/

    • unique_regions_from_kiva_loan_themes.xlsx

    These are all the regions corresponding to the geocodes found in Kiva's loan_themes_by_region. There are 718 unique entries, that you can join with any database from Kiva that has either a coordinates or region column.
    Columns:

    • geo: pair of Lat, Lon (from loan_themes_by_region)

    • City: name of the city (has the most NaN's)

    • Administrative region: first level of administrative inclusion for the city/location; (the equivalent of county for US)

    • Sub-national region: second level of administrative inclusion for the geo pair. (like state for US)

    • Country: name of the country

    Acknowledgements

    Thanks to Shane Lynn for the batch geocoding and to Joseph Deferio for reverse geocoding:

    https://www.shanelynn.ie/batch-geocoding-in-python-with-google-geocoding-api/

    https://github.com/jdeferio/Reverse_Geocode

    The MPI datasets you can find on the Oxford website (http://ophi.org.uk/) under Research.

    "Citation: Alkire, S. and Kanagaratnam, U. (2018)

    “Multidimensional Poverty Index Winter 2017-18: Brief methodological note and results.” Oxford Poverty and Human Development Initiative, University of Oxford, OPHI Methodological Notes 45."

  4. w

    Fifth Integrated Household Survey 2019-2020 - Malawi

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office (NSO) (2024). Fifth Integrated Household Survey 2019-2020 - Malawi [Dataset]. https://microdata.worldbank.org/index.php/catalog/3818
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    National Statistical Office (NSO)
    Time period covered
    2019 - 2020
    Area covered
    Malawi
    Description

    Abstract

    The Integrated Household Survey is one of the primary instruments implemented by the Government of Malawi through the National Statistical Office (NSO) roughly every 3-5 years to monitor and evaluate the changing conditions of Malawian households. The IHS data have, among other insights, provided benchmark poverty and vulnerability indicators to foster evidence-based policy formulation and monitor the progress of meeting the Millennium Development Goals (MDGs), the goals listed as part of the Malawi Growth and Development Strategy (MGDS) and now the Sustainable Development Goals (SDGs).

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals
    • Consumption expenditure commodities/items
    • Communities
    • Agricultural household/ Holder/ Crop
    • Market

    Universe

    Members of the following households are not eligible for inclusion in the survey: • All people who live outside the selected EAs, whether in urban or rural areas. • All residents of dwellings other than private dwellings, such as prisons, hospitals and army barracks. • Members of the Malawian armed forces who reside within a military base. (If such individuals reside in private dwellings off the base, however, they should be included among the households eligible for random selection for the survey.) • Non-Malawian diplomats, diplomatic staff, and members of their households. (However, note that non-Malawian residents who are not diplomats or diplomatic staff and are resident in private dwellings are eligible for inclusion in the survey. The survey is not restricted to Malawian citizens alone.) • Non-Malawian tourists and others on vacation in Malawi.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The IHS5 sampling frame is based on the listing information and cartography from the 2018 Malawi Population and Housing Census (PHC); includes the three major regions of Malawi, namely North, Center and South; and is stratified into rural and urban strata. The urban strata include the four major urban areas: Lilongwe City, Blantyre City, Mzuzu City, and the Municipality of Zomba. All other areas are considered as rural areas, and each of the 27 districts were considered as a separate sub-stratum as part of the main rural stratum. The sampling frame further excludes the population living in institutions, such as hospitals, prisons and military barracks. Hence, the IHS5 strata are composed of 32 districts in Malawi.

    A stratified two-stage sample design was used for the IHS5.

    Note: Detailed sample design information is presented in the "Fifth Integrated Household Survey 2019-2020, Basic Information Document" document.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    HOUSEHOLD QUESTIONNAIRE The Household Questionnaire is a multi-topic survey instrument and is near-identical to the content and organization of the IHS3 and IHS4 questionnaires. It encompasses economic activities, demographics, welfare and other sectoral information of households. It covers a wide range of topics, dealing with the dynamics of poverty (consumption, cash and non-cash income, savings, assets, food security, health and education, vulnerability and social protection). Although the IHS5 household questionnaire covers a wide variety of topics in detail it intentionally excludes in-depth information on topics covered in other surveys that are part of the NSO’s statistical plan (such as maternal and child health issues covered at length in the Malawi Demographic and Health Survey).

    AGRICULTURE QUESTIONNAIRE All IHS5 households that are identified as being involved in agricultural or livestock activities were administered the agriculture questionnaire, which is primarily modelled after the IHS3 counterpart. The modules are expanding on the agricultural content of the IHS4, IHS3, IHS2, AISS, and other regional agricultural surveys, while remaining consistent with the NACAL topical coverage and methodology. The development of the agriculture questionnaire was done with input from the aforementioned stakeholders who provided input on the household questionnaire as well as outside researchers involved in research and policy discussions pertaining to the Malawian agriculture. The agriculture questionnaire allows, among other things, for extensive agricultural productivity analysis through the diligent estimation of land areas, both owned and cultivated, labor and non-labor input use and expenditures, and production figures for main crops, and livestock. Although one of the major foci of the agriculture data collection effort was to produce smallholder production estimates for major crops, it is also possible to disaggregate the data by gender and main geographical regions. The IHS5 cross-sectional households supply information on the last completed rainy season (2017/2018 or 2018/2019) and the last completed dry season (2018 or 2019) depending on the timing of their interview.

    FISHERIES QUESTIONNAIRE The design of the IHS5 fishery questionnaire is identical to the questionnaire designed for IHS3. The IHS3 fisheries questionnaire was informed by the design and piloting of a fishery questionnaire by the World Fish Center (WFC), which was supported by the LSMS-ISA project for the purpose of assembling a fishery questionnaire that could be integrated into multi-topic household-surveys. The WFC piloted the draft instrument in November 2009 in the Lower Shire region, and the NSO team considered the revised draft in designing the IHS5 fishery questionnaire.

    COMMUNITY QUESTIONNAIRE The content of the IHS5 Community Questionnaire follows the content of the IHS3 & IHS4 Community Questionnaires. A “community” is defined as the village or urban location surrounding the enumeration area selected for inclusion in the sample and which most residents recognize as being their community. The IHS5 community questionnaire was administered to each community associated with the cross-sectional EAs interviewed. Identical to the IHS3 and IHS4 approach, to a group of several knowledgeable residents such as the village headman, the headmaster of the local school, the agricultural field assistant, religious leaders, local merchants, health workers and long-term knowledgeable residents. The instrument gathers information on a range of community characteristics, including religious and ethnic background, physical infrastructure, access to public services, economic activities, communal resource management, organization and governance, investment projects, and local retail price information for essential goods and services.

    MARKET QUESTIONNAIRE The Market Survey consisted of one questionnaire which is composed of four modules. Module A: Market Identification, Module B: Seasonal Main Crops, Module C: Permanents Crops, and Module D: Food Consumption.

    Cleaning operations

    DATA ENTRY PLATFORM To ensure data quality and timely availability of data, the IHS5 was implemented using the World Bank’s Survey Solutions CAPI software. To carry out IHS5, 1 laptop computer and a wireless internet router were assigned to each team supervisor, and each enumerator had an 8–inch GPS-enabled Lenovo tablet computer. The use of Survey Solutions allowed for the real-time availability of data as the completed data was completed, approved by the Supervisor and synced to the Headquarters server as frequently as possible. While administering the first module of the questionnaire the enumerator(s) also used their tablets to record the GPS coordinates of the dwelling units. In Survey Solutions, Headquarters can then see the location of the dwellings plotted on a map of Malawi to better enable supervision from afar – checking both the number of interviews performed and the fact that the sample households lie within EA boundaries. Geo-referenced household locations from that tablet complemented the GPS measurements taken by the Garmin eTrex 30 handheld devices and these were linked with publically available geospatial databases to enable the inclusion of a number of geospatial variables - extensive measures of distance (i.e. distance to the nearest market), climatology, soil and terrain, and other environmental factors - in the analysis.

    The range and consistency checks built into the application was informed by the LSMS-ISA experience in previous IHS waves. Prior programming of the data entry application allowed for a wide variety of range and consistency checks to be conducted and reported and potential issues investigated and corrected before closing the assigned enumeration area. Headquarters (NSO management) assigned work to supervisors based on their regions of coverage. Supervisors then made assignments to the enumerators linked to their Supervisor account. The work assignments and syncing of completed interviews took place through a Wi-Fi connection to the IHS5 server. Because the data was available in real time it was monitored closely throughout the entire data collection period and upon receipt of the data at headquarters, data was exported to STATA for other consistency checks, data cleaning, and analysis.

    DATA MANAGEMENT The IHS5 Survey Solutions CAPI based data entry application was designed to stream-line the data collection process from the field. IHS5 Interviews were collected in “sample” mode (assignments generated from headquarters) as opposed to “census” mode (new interviews created by interviewers from a template) for the NSO to have more control over the sample.

    The range and consistency checks built into the application was informed by the LSMS-ISA experience in previous IHS waves. Prior programming of the data

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town

Poverty Status by Town - Datasets - CTData.org

Explore at:
Dataset updated
Mar 16, 2016
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.

Search
Clear search
Close search
Google apps
Main menu