Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blue Earth City township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Blue Earth City township. The dataset can be utilized to understand the population distribution of Blue Earth City township by age. For example, using this dataset, we can identify the largest age group in Blue Earth City township.
Key observations
The largest age group in Blue Earth City Township, Minnesota was for the group of age 65 to 69 years years with a population of 56 (10.69%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Blue Earth City Township, Minnesota was the 50 to 54 years years with a population of 4 (0.76%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township Population by Age. You can refer the same here
The data file is from https://simplemaps.com/data/world-cities.
fieldname | description |
---|---|
city | The name of the city/town as a Unicode string |
city_ascii | city as an ASCII string (e.g. Goiania). Left blank if ASCII representation is not possible. |
lat | The latitude of the city/town. |
lon | The longitude of the city/town. |
country | The name of the city/town's country. |
iso2 | The alpha-2 iso code of the country. |
iso3 | The alpha-3 iso code of the country. |
admin_name | The name of the highest level administration region of the city town (e.g. a US state or Canadian province). Possibly blank. |
capital | Blank string if not a capital, otherwise: primary - country's capital (e.g. Washington D.C.) admin - first-level admin capital (e.g. Little Rock, AR) minor - lower-level admin capital (e.g. Fayetteville, AR) |
population | An estimate of the city's urban population. Only available for some (prominent) cities. If the urban population is not available, the municipal population is used. |
id | A 10-digit unique id generated by SimpleMaps. We make every effort to keep it consistent across releases and databases (e.g. U.S Cities Database). |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.
Thank you for your continued support of the GlobPOP.
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong HK: Population in Largest City: as % of Urban Population data was reported at 99.637 % in 2017. This records an increase from the previous number of 99.540 % for 2016. Hong Kong HK: Population in Largest City: as % of Urban Population data is updated yearly, averaging 99.382 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 100.000 % in 2010 and a record low of 94.548 % in 1974. Hong Kong HK: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong – Table HK.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015, and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more, which were listed in the United Nations (UN) World Urbanization Prospects (WUP) database (including Mainland China, Hong Kong, Macao and Taiwan). We employed a range of spectral indices to generate the 1990–2015 ISA maps in urban areas based on remotely sensed data acquired from multiple sources. In this process, various types of auxiliary data were used to create the desired products for urban areas through manual segmentation of peri-urban and rural areas together with reference to several freely available products of urban extent derived from ISA data using automated urban–rural segmentation methods. After that, following the well-established rules adopted by the UN, we carried out the conversion to the standardized built-up area products from the 1990–2015 ISA maps in urban areas, which conformed to the definition of urban agglomeration area (UAA). Finally, we implemented data postprocessing to guarantee the spatial accuracy and temporal consistency of the final product.The standardized urban built-up area dataset (SUBAD–China) introduced here is the first product using the same definition of UAA adopted by the WUP database for 433 county and higher-level cities in China. The comparisons made with contemporary data produced by the National Bureau of Statistics of China, the World Bank and UN-habitat indicate that our results have a high spatial accuracy and good temporal consistency and thus can be used to characterize the process of urban expansion in China.The SUBAD–China contains 2,598 vector files in shapefile format containing data for all China's cities listed in the WUP database that have different urban sizes and income levels with populations over 300,000. Attached with it, we also provided the distribution of validation points for the 1990–2010 ISA products of these 433 Chinese cities in shapefile format and the confusion matrices between classified data and reference data during different time periods as a Microsoft Excel Open XML Spreadsheet (XLSX) file.Furthermore, The standardized built-up area products for such cities will be consistently updated and refined to ensure the quality of their spatiotemporal coverage and accuracy. The production of this dataset together with the usage of population counts derived from the WUP database will close some of the data gaps in the calculation of SDG11.3.1 and benefit other downstream applications relevant to a combined analysis of the spatial and socio-economic domains in urban areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Laos LA: Population in Largest City data was reported at 657,108.000 Person in 2017. This records an increase from the previous number of 649,550.000 Person for 2016. Laos LA: Population in Largest City data is updated yearly, averaging 268,948.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 657,108.000 Person in 2017 and a record low of 75,908.000 Person in 1960. Laos LA: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
A range of indicators for a selection of cities from the New York City Global City database.
Dataset includes the following:
Geography
City Area (km2)
Metro Area (km2)
People
City Population (millions)
Metro Population (millions)
Foreign Born
Annual Population Growth
Economy
GDP Per Capita (thousands $, PPP rates, per resident)
Primary Industry
Secondary Industry
Share of Global 500 Companies (%)
Unemployment Rate
Poverty Rate
Transportation
Public Transportation
Mass Transit Commuters
Major Airports
Major Ports
Education
Students Enrolled in Higher Education
Percent of Population with Higher Education (%)
Higher Education Institutions
Tourism
Total Tourists Annually (millions)
Foreign Tourists Annually (millions)
Domestic Tourists Annually (millions)
Annual Tourism Revenue ($US billions)
Hotel Rooms (thousands)
Health
Infant Mortality (Deaths per 1,000 Births)
Life Expectancy in Years (Male)
Life Expectancy in Years (Female)
Physicians per 100,000 People
Number of Hospitals
Anti-Smoking Legislation
Culture
Number of Museums
Number of Cultural and Arts Organizations
Environment
Green Spaces (km2)
Air Quality
Laws or Regulations to Improve Energy Efficiency
Retrofitted City Vehicle Fleet
Bike Share Program
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico MX: Population in Largest City data was reported at 21,500,251.000 Person in 2017. This records an increase from the previous number of 21,419,976.000 Person for 2016. Mexico MX: Population in Largest City data is updated yearly, averaging 15,225,498.500 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 21,500,251.000 Person in 2017 and a record low of 5,479,184.000 Person in 1960. Mexico MX: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mexico – Table MX.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Panama PA: Population in Largest City data was reported at 1,745,913.000 Person in 2017. This records an increase from the previous number of 1,709,128.000 Person for 2016. Panama PA: Population in Largest City data is updated yearly, averaging 808,056.500 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,745,913.000 Person in 2017 and a record low of 282,895.000 Person in 1960. Panama PA: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Panama – Table PA.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use. "Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data. Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Central African Republic CF: Population in Largest City data was reported at 985,965.000 Person in 2024. This records an increase from the previous number of 958,335.000 Person for 2023. Central African Republic CF: Population in Largest City data is updated yearly, averaging 487,345.000 Person from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 985,965.000 Person in 2024 and a record low of 94,350.000 Person in 1960. Central African Republic CF: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Central African Republic – Table CF.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.;United Nations, World Urbanization Prospects.;;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Oman OM: Population in Largest City data was reported at 1,377,500.000 Person in 2017. This records an increase from the previous number of 1,311,734.000 Person for 2016. Oman OM: Population in Largest City data is updated yearly, averaging 300,762.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,377,500.000 Person in 2017 and a record low of 13,792.000 Person in 1960. Oman OM: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Oman – Table OM.World Bank: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Population of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file.
Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries.
Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition.
Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Georgia GE: Population in Largest City data was reported at 1,077,597.000 Person in 2017. This records a decrease from the previous number of 1,077,861.000 Person for 2016. Georgia GE: Population in Largest City data is updated yearly, averaging 1,079,842.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,236,979.000 Person in 1989 and a record low of 717,766.000 Person in 1960. Georgia GE: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Georgia – Table GE.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
The Historical Urban Population, 3700 BC - AD 2000, originally developed by the Yale School of Forestry & Environmental Studies, is the first spatially explicit global data set containing location and size of urban populations over the last 6,000 years. The data set was created by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data. Each data point consists of a city name, latitude, longitude, year, population, and a reliability ranking to assess the geographic uncertainty of each data point. Despite spatial and temporal gaps, no other geocoded data set at this resolution exists. It can therefore be used to investigate long-term historical urbanization trends and patterns, evaluate the current era of urbanization, and build a richer record of urban population through history.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name