46 datasets found
  1. Distribution of the global population by continent 2024

    • statista.com
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  2. Population by Cities

    • kaggle.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair A. Chaudhry (2024). Population by Cities [Dataset]. https://www.kaggle.com/datasets/umxir9/population-by-cities
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 18, 2024
    Dataset provided by
    Kaggle
    Authors
    Umair A. Chaudhry
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Database Name: population_cities

    Description: The population_cities dataset provides information on the population of various cities worldwide. It includes key details such as the city's name, the country it is located in, the total population, and the continent it belongs to. This dataset is ideal for researchers, data analysts, and enthusiasts looking to explore global population trends, conduct regional comparisons, or analyze urban demographics across continents.

    Columns:
    1. City: Name of the city.
    2. Country: Name of the country where the city is located.
    3. Population: Total population of the city.
    4. Continent: The continent where the city is situated (e.g., Asia, Europe, Africa, etc.).

    Potential Uses: - Comparative analysis of city populations across continents.
    - Visualization of population density in specific regions.
    - Studies on urbanization trends and growth patterns.
    - Development of machine learning models for population prediction or clustering analysis.

    Feel free to explore and share insights from this dataset!

  3. H

    Eswatini - Population Counts

    • data.humdata.org
    • data.amerigeoss.org
    geotiff
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Eswatini - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-eswatini
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    WorldPop
    Area covered
    Eswatini
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  4. w

    Data from: Urban Extent of Africa 2010

    • data.wu.ac.at
    • dataverse.harvard.edu
    data file in tifgis
    Updated Jan 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Food Policy Research Institute (IFPRI) (2017). Urban Extent of Africa 2010 [Dataset]. https://data.wu.ac.at/schema/datahub_io/NzkzMDVjYTctYjE1ZS00MzZmLTlmNmEtYjgyMTEzNjRjNzRj
    Explore at:
    data file in tifgisAvailable download formats
    Dataset updated
    Jan 9, 2017
    Dataset provided by
    International Food Policy Research Institute (IFPRI)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate delineation of the urban and rural areas has a broad range of implications on the quality and reliability of agricultural production and socio-economic statistics, design of household survey, establishment of agricultural development strategies and policies, and effective resource allocation. Two most widely-used urban/rural mapping dataset across Africa, GRUMP (Global Rural and Urban Mapping Project; http://sedac.ciesin.columbia.edu/data/collection/grump-v1) and SAGE Urban Extents (https://nelson.wisc.edu/sage/data-and-models/schneider.php), uses the underlying datasets of 2000-2002. There are various pilot studies attempting to update the dataset in major metropolitan areas or specific countries, but no African continent-wide effort has been made to date. To address this, using the GRUMP 2000 data as the baseline, we used a set of recently-published datasets to identify the newly extended urban areas across Africa. Three main data sources were the nightlights data from Defense Meteorological Satellite Program (DMSP) 2010-2013, WorldPop 2010, and the MODIS Global Land Cover 2010-2013. Country-level urban population headcounts and their share of total population were acquired from the World Bank for 2010-2013 and used to control the total size of the urban population from the analysis is consistent with the statistics data at 1 km resolution.

  5. H

    Bangladesh - Population Counts

    • data.humdata.org
    geotiff
    Updated Sep 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). Bangladesh - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-bangladesh
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Sep 19, 2021
    Dataset provided by
    WorldPop
    Area covered
    Bangladesh
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  6. World Lakes

    • kaggle.com
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mehrdad (2022). World Lakes [Dataset]. http://doi.org/10.34740/kaggle/dsv/4653679
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Kaggle
    Authors
    mehrdad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Property Description

    Hylak_id Unique lake identifier. Values range from 1 to 1,427,688.

    **Lake_name ** Name of lake or reservoir. This field is currently only populated for lakes with an area of at least 500 km2; for large reservoirs where a name was available in the GRanD database; and for smaller lakes where a name was available in the GLWD database.

    Country Country that the lake (or reservoir) is located in. International or transboundary lakes are assigned to the country in which its corresponding lake pour point is located and may be arbitrary for pour points that fall on country boundaries.

    Continent Continent that the lake (or reservoir) is located in. Geographic continent: Africa, Asia, Europe, North America, South America, or Oceania (Australia and Pacific Islands)

    Poly_src The name of datasets that were used in the column. Source of original lake polygon: CanVec; SWBD; MODIS; NHD; ECRINS; GLWD; GRanD; or Other More information on these data sources can be found in Table 1.

    Lake_type Indicator for lake type: 1: Lake 2: Reservoir 3: Lake control (i.e. natural lake with regulation structure) Note that the default value for all water bodies is 1, and only those water bodies explicitly identified as other types (mostly based on information from the GRanD database) have other values; hence the type ‘Lake’ also includes all unidentified smaller human-made reservoirs and regulated lakes.

    Grand_id ID of the corresponding reservoir in the GRanD database, or value 0 for no corresponding GRanD record. This field can be used to join additional attributes from the GRanD database.

    Lake_area Lake surface area (i.e. polygon area), in square kilometers.

    Shore_len Length of shoreline (i.e. polygon outline), in kilometers.

    Shore_dev Shoreline development, measured as the ratio between shoreline length and the circumference of a circle with the same area. A lake with the shape of a perfect circle has a shoreline development of 1, while higher values indicate increasing shoreline complexity.

    Vol_total Total lake or reservoir volume, in million cubic meters (1 mcm = 0.001 km3). For most polygons, this value represents the total lake volume as estimated using the geostatistical modeling approach by Messager et al. (2016). However, where either a reported lake volume (for lakes ≥ 500 km2) or a reported reservoir volume (from GRanD database) existed, the total volume represents this reported value. In cases of regulated lakes, the total volume represents the larger value between reported reservoir and modeled or reported lake volume. Column ‘Vol_src’ provides additional information regarding these distinctions.

    Vol_res Reported reservoir volume, or storage volume of added lake regulation, in million cubic meters (1 mcm = 0.001 km3). 0: no reservoir volume

    Vol_src 1: ‘Vol_total’ is the reported total lake volume from literature 2: ‘Vol_total’ is the reported total reservoir volume from GRanD or literature 3: ‘Vol_total’ is the estimated total lake volume using the geostatistical modeling approach by Messager et al. (2016)

    Depth_avg Average lake depth, in meters. Average lake depth is defined as the ratio between total lake volume (‘Vol_total’) and lake area (‘Lake_area’).

    Dis_avg Average long-term discharge flowing through the lake, in cubic meters per second. This value is derived from modeled runoff and discharge estimates provided by the global hydrological model WaterGAP, downscaled to the 15 arc-second resolution of HydroSHEDS (see section 2.2 for more details) and is extracted at the location of the lake pour point. Note that these model estimates contain considerable uncertainty, in particular for very low flows. -9999: no data as lake pour point is not on HydroSHEDS landmask

    Res_time Average residence time of the lake water, in days. The average residence time is calculated as the ratio between total lake volume (‘Vol_total’) and average long-term discharge (‘Dis_avg’). Values below 0.1 are rounded up to 0.1 as shorter residence times seem implausible (and likely indicate model errors). -1: cannot be calculated as ‘Dis_avg’ is 0 -9999: no data as lake pour point is not on HydroSHEDS landmask

    Elevation Elevation of lake surface, in meters above sea level. This value was primarily derived from the EarthEnv-DEM90 digital elevation model at 90 m pixel resolution by calculating the majority pixel elevation found within the lake boundaries. To remove some artefacts inherent in this DEM for northern latitudes, all lake values that showed negative elevation for the area north of 60°N were substituted with results using the coarser GTOPO30 DEM of USGS at 1 km pixel resolution, which ensures land surfaces ≥0 in this region. Note that due to the remaining uncertainties in the EarthEnv-DEM90 some small negative values occur along the global oce...

  7. A

    China, Hong Kong Special Administrative Region - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). China, Hong Kong Special Administrative Region - Population Counts [Dataset]. https://data.amerigeoss.org/ru/dataset/worldpop-china-hong-kong-special-administrative-region-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    May 26, 2023
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Hong Kong
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  8. Holy See - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Holy See - Population Counts [Dataset]. https://data.amerigeoss.org/ne/dataset/worldpop-holy-see-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Holy See, Vatican City
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  9. T

    POPULATION by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=america
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. H

    United States Minor Outlying Islands - Population Counts

    • data.humdata.org
    geotiff
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). United States Minor Outlying Islands - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-united-states-minor-outlying-islands
    Explore at:
    geotiff(161359881)Available download formats
    Dataset updated
    Aug 26, 2025
    Dataset provided by
    WorldPop
    Area covered
    United States Minor Outlying Islands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  11. Total population worldwide 1950-2100

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  12. British Virgin Islands - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). British Virgin Islands - Population Counts [Dataset]. https://data.amerigeoss.org/fi/dataset/worldpop-british-virgin-islands-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    British Virgin Islands
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  13. Somalia - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). Somalia - Population Counts [Dataset]. https://data.amerigeoss.org/tl/dataset/groups/worldpop-somalia-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    United Nationshttp://un.org/
    United Nations Office for the Coordination of Humanitarian Affairshttp://www.unocha.org/
    Area covered
    Somalia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  14. A

    ‘Malaria in Africa’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Malaria in Africa’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-malaria-in-africa-8ed6/4159b894/?iid=030-413&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Analysis of ‘Malaria in Africa’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/lydia70/malaria-in-africa on 29 August 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    Africa, the world's second-largest continent, a continent with a wide array of vibrant cultures each with its own deep history, continent number 2 of largest population, and the continent is home to wonderful wildlife you can spot when you go on safari! Let's focus on Africa in this dataset.

    Malaria is a common disease in Africa. The disease is transmitted to humans through infected mosquito bites. Although you can take preventive measures against malaria, it can be life-threatening. This dataset includes the malaria cases in African countries, the incidence at risk, and data on preventive treatments against malaria.

    Content

    This dataset includes data on all African countries from 2007 till 2017. Each country has a unique ISO-3 country code, and the dataset includes the latitude and longitude point of each country as well. The dataset includes the cases of malaria that have been reported in each country and each year, as well as data on preventive measures that have been taken to prevent malaria.

    Acknowledgements

    The data on the incidence of malaria, malaria cases reported, and preventive treatments against malaria have been retrieved from the world bank open data source.

    Inspiration

    Each country has a unique ISO-3 country code. You can use the ISO-3 code to create choropleth maps and in the geospatial analysis. In addition, the dataset includes latitude and longitude points for each country.

    Drinking water safety and sanitation include a risk factor for malaria. Can improved drinking water facilities and preventive measures decrease the risk of malaria infection?

    Check out my notebook submission, feel free to copy the kernel for your analysis: https://www.kaggle.com/lydia70/notebook-malaria-in-africa The notebook submission includes geospatial analysis with plotly.

    --- Original source retains full ownership of the source dataset ---

  15. Viet Nam - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). Viet Nam - Population Counts [Dataset]. https://data.amerigeoss.org/hr/dataset/worldpop-viet-nam-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Vietnam
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  16. H

    Montserrat - Population Counts

    • data.humdata.org
    geotiff
    Updated Sep 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). Montserrat - Population Counts [Dataset]. https://data.humdata.org/dataset/worldpop-population-counts-for-montserrat
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Sep 19, 2021
    Dataset provided by
    WorldPop
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  17. i

    Roadkills in Europe: areas of high risk of collision and critical for...

    • iepnb.es
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roadkills in Europe: areas of high risk of collision and critical for populations persistence. - Dataset - CKAN [Dataset]. https://iepnb.es/catalogo/dataset/roadkills-in-europe-areas-of-high-risk-of-collision-and-critical-for-populations-persistence11
    Explore at:
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Roads and other linear infrastructures are among the largest and most visible human-made artefacts on the planet today and represent a threat for both endangered and common species, mainly due to additional mortality from collisions with vehicles. There is strong evidence that additional non-natural mortality affects many species and a growing number of populations could have increased risk of extinction unless effective mitigation actions are applied. At a global scale, Europe is among the regions with highest transport infrastructures density. Between 1970 and 2000 the kilometres of built roads more than tripled in several countries in Europe (EU-15) reaching up to 3 million km of which around 51 500 km consisted of motorways (1.7%). Currently, 50% of the continent is within 1.5 km of transportation infrastructure which may lead to declines in birds and mammals. We urgently need to advance our understanding of how roads affect biodiversity through two steps: 1) identifying which species and regions are more at risk from infrastructures; and 2) determining where those risks result in impacts (loss of biodiversity). Road ecology as a discipline has largely focused on the first step. In Europe, roadkill rates have been estimated for a wide range of vertebrates with millions of casualties detected each year. However, we still lack estimates for all species or areas, even in well-studied regions. The aim of this study is to determine which species are at risk due to roads and where roads can impact population persistence and biodiversity. We focused on bird and mammalian species in Europe as a case study. First, we developed a predictive model of roadkill rates based on diverse species traits which allowed us to predict rates for all European terrestrial bird and mammal species and to map the potential incidence of roadkills. We fitted trait-based random forest regression models separately for birds and mammals to explain empirical roadkill rates. We used all available roadkill rates and the following predictors: species trait data, multiple characteristics of the study (latitude and longitude and survey interval) to account for species abundance and detectability, and taxonomic order to account for evolutionary relationships. Second, we used a generalized population model to estimate long-term vulnerability to road mortality. We estimated ~194 million birds and ~29 million mammals may be killed each year on the European road network. Overall, species with higher roadkill rates differ from those in which roadkill is likely to affect long-term persistence. Simplified models of species traits and wildlife-roads interactions at a macro scale allow a first assessment of the road mortality on wildlife and implications on population’s persistence. This macroecological approach provide guidance for national road planning, support the definition of target areas for further testing at a finer-scale resolution, and ultimately prioritize site-specific areas where mitigation would be most beneficial.

  18. Africa Crop Maize - Harvested Area (Mature Support)

    • africageoportal.com
    • agriculture.africageoportal.com
    • +1more
    Updated Nov 19, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Maize - Harvested Area (Mature Support) [Dataset]. https://www.africageoportal.com/datasets/6fab7020446c43b0b44727d6cb134ae8
    Explore at:
    Dataset updated
    Nov 19, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2025 and will be retired in December 2026. New data is available for your use directly from the Authoritative Provider. Esri recommends accessing the data from the source provider as soon as possible as our service will not longer be available after December 2026. Maize (Zea mays), also known as corn, is a crop of world wide importance. Originally domesticated in what is now Mexico, its tolerance of diverse climates has lead to its widespread cultivation. Globally, it is tied with rice as the second most widely grown crop. Only wheat is more widely grown. In Africa it is grown throughout the agricultural regions of the continent from the Nile Delta in the north to the country of South Africa in the south. In sub-Saharan Africa it is relied on as a staple crop for 50% of the population. Dataset Summary This layer provides access to a5 arc-minute(approximately 10 km at the equator)cell-sized raster of the 1999-2001 annual average area ofmaize harvested in Africa. The data are in units of hectares/grid cell. TheSPAM 2000 v3.0.6 data used to create this layerwere produced by theInternational Food Policy Research Institutein 2012.This dataset was created by spatially disaggregating national and sub-national harvest datausing theSpatial Production Allocation Model. Link to source metadata For more information about this dataset and the importance of maize as a staple food see theHarvest Choice webpage. For data on other agricultural species in Africa see these layers:Cassava Groundnut (Peanut) Millet Potato Rice Sorghum Sweet Potato and Yam Wheat Data for important agricultural crops in South America are availablehere. What can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer hasquery,identify, andexportimage services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixelswhich allows access to the full dataset. The source data for this layer are availablehere. This layer is part of a larger collection oflandscape layersthat you can use to perform a wide variety of mapping and analysis tasks. TheLiving Atlas of the Worldprovides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started follow these links: Landscape Layers - a reintroductionLiving Atlas Discussion Group

  19. T

    POPULATION by Country in AFRICA/1000

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). POPULATION by Country in AFRICA/1000 [Dataset]. https://tradingeconomics.com/country-list/population?continent=africa/1000
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Jan 12, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  20. A

    Cambodia - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). Cambodia - Population Counts [Dataset]. https://data.amerigeoss.org/ne/dataset/groups/worldpop-cambodia-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Cambodia
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
Organization logo

Distribution of the global population by continent 2024

Explore at:
46 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

Search
Clear search
Close search
Google apps
Main menu