38 datasets found
  1. World Population Dataset

    • kaggle.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amit Kumar Sahu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

    1. Continent Population Characteristics Analysis.
    2. Analysis of Countries.
      • Top 10 Most Populated and Least Populated Countries
      • Top 10 Largest and Smallest Countries as per Area
      • Population Growth From 1970 to 2020 (50 Years)
    3. Countries Represent % Of World Population.
      • Countries that represent below 0.1% of the World Population.
      • Countries that represent above 2% of the world Population
      • Top 10 Over Populated Countries based on Density Per Sq KM.
      • Top 10 Least Populated Countries based on Density Per Sq KM.
  2. Distribution of the global population by continent 2024

    • statista.com
    • ai-chatbox.pro
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  3. World Population Statistics - 2023

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). World Population Statistics - 2023 [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/world-population-statistics-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhavik Jikadara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description
    • The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on Earth, which far exceeds the world population of 7.2 billion in 2015. Our estimate based on UN data shows the world's population surpassing 7.7 billion.
    • China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
    • The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
    • Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
    • In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added yearly.
    • This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content

    • In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc. >Dataset Glossary (Column-Wise):
    • Rank: Rank by Population.
    • CCA3: 3 Digit Country/Territories Code.
    • Country/Territories: Name of the Country/Territories.
    • Capital: Name of the Capital.
    • Continent: Name of the Continent.
    • 2022 Population: Population of the Country/Territories in the year 2022.
    • 2020 Population: Population of the Country/Territories in the year 2020.
    • 2015 Population: Population of the Country/Territories in the year 2015.
    • 2010 Population: Population of the Country/Territories in the year 2010.
    • 2000 Population: Population of the Country/Territories in the year 2000.
    • 1990 Population: Population of the Country/Territories in the year 1990.
    • 1980 Population: Population of the Country/Territories in the year 1980.
    • 1970 Population: Population of the Country/Territories in the year 1970.
    • Area (km²): Area size of the Country/Territories in square kilometers.
    • Density (per km²): Population Density per square kilometer.
    • Growth Rate: Population Growth Rate by Country/Territories.
    • World Population Percentage: The population percentage by each Country/Territories.
  4. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  5. T

    POPULATION by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=america
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. d

    Gridded Population of the World, Version 3 (GPWv3): Population Density Grid

    • catalog.data.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Gridded Population of the World, Version 3 (GPWv3): Population Density Grid [Dataset]. https://catalog.data.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-population-density-grid
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    World
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Density Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population density grids are derived by dividing the population count grids by the land area grid and represent persons per square kilometer. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  7. T

    POPULATION by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/population?continent=europe
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Population; households and population dynamics; from 1899

    • data.overheid.nl
    • staging.dexes.eu
    • +2more
    atom, json
    Updated Dec 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2024). Population; households and population dynamics; from 1899 [Dataset]. https://data.overheid.nl/dataset/43369-population--households-and-population-dynamics--from-1899
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Dec 23, 2024
    Dataset provided by
    Statistics Netherlands
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The most important key figures about population, households, population growth, births, deaths, migration, marriages, marriage dissolutions and change of nationality of the Dutch population.

    CBS is in transition towards a new classification of the population by origin. Greater emphasis is now placed on where a person was born, aside from where that person’s parents were born. The term ‘migration background’ is no longer used in this regard. The main categories western/non-western are being replaced by categories based on continents and a few countries that share a specific migration history with the Netherlands. The new classification is being implemented gradually in tables and publications on population by origin.

    Data available from: 1899

    Status of the figures: The 2023 figures on stillbirths and perinatal mortality are provisional, the other figures in the table are final.

    Changes as of 23 December 2024: Figures with regard to population growth for 2023 and figures of the population on 1 January 2024 have been added. The provisional figures on the number of stillbirths and perinatal mortality for 2023 do not include children who were born at a gestational age that is unknown. These cases were included in the final figures for previous years. However, the provisional figures show a relatively larger number of children born at an unknown gestational age. Based on an internal analysis for 2022, it appears that in the majority of these cases, the child was born at less than 24 weeks. To ensure that the provisional 2023 figures do not overestimate the number of stillborn children born at a gestational age of over 24 weeks, children born at an unknown gestational age have now been excluded.

    Changes as of 15 December 2023: None, this is a new table. This table succeeds the table Population; households and population dynamics; 1899-2019. See section 3. The following changes have been made: - The underlying topic folders regarding 'migration background' have been replaced by 'Born in the Netherlands' and 'Born abroad'; - The origin countries Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Turkey have been assigned to the continent of Asia (previously Europe).

    When will the new figures be published? The figures for the population development in 2023 and the population on 1 January 2024 will be published in the second quarter of 2024.

  9. n

    Latin America and Caribbean Population Distribution Database from...

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Latin America and Caribbean Population Distribution Database from UNEP/GRID-Sioux Falls [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2232848778-CEOS_EXTRA.html
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1960 - Dec 31, 1990
    Area covered
    Description

    The Latin America population database is part of an ongoing effort to improve global, spatially referenced demographic data holdings. Such databases are useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

     This documentation describes the Latin American Population Database, a
     collaborative effort between the International Center for Tropical
     Agriculture (CIAT), the United Nations Environment Program (UNEP-GRID,
     Sioux Falls) and the World Resources Institute (WRI). This work is
     intended to provide a population database that compliments previous
     work carried out for Asia and Africa. This data set is more detailed
     than the Africa and Asia data sets. Population estimates for 1960,
     1970, 1980, 1990 and 2000 are also provided. The work discussed in the
     following paragraphs is also related to NCGIA activities to produce a
     global database of subnational population estimates (Tobler et
     al. 1995), and an improved database for the Asian continent (Deichmann
     1996a).
    
  10. T

    POPULATION by Country in AFRICA/1000

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). POPULATION by Country in AFRICA/1000 [Dataset]. https://tradingeconomics.com/country-list/population?continent=africa/1000
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Jan 12, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. T

    POPULATION by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/population?continent=asia
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. Covid19 Dataset

    • kaggle.com
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shailesh Dwivedi (2020). Covid19 Dataset [Dataset]. https://www.kaggle.com/baba4121/covid19-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shailesh Dwivedi
    Description

    Context

    As the world is fighting against this invisible enemy a lot of data-driven students like me want to study it as well as we can. There is an enormous number of data set available on covid19 today but as a beginner, in this field, I wanted to find some more simple data. So here I come up with this covid19 data set which I scrapped from "https://www.worldometers.info/coronavirus". It is my way of learning by doing. This data is till 5/17/2020. I will keep on updating it.

    Content

    The dataset contains 194 rows and 12 columns which are described below:-

    Country: Contains the name of all Countries. Total_Cases: It contains the total number of cases the country has till 5/17/2020. Total_Deaths: Total number of deaths in that country till 5/17/2020. Total_Recovered: Total number of individuals recovered from covid19. Active_Cases: Total active cases in the country on 5/17/2020. Critical_Cases: Number of patients in critical condition. Cases/Million_Population: Number of cases per million population of that country. Deaths/Million_Population: Number of deaths per million population of that country. Total_Tests: Total number of tests performed 5/17/2020 Tests/Million_Population: Number of tests performed per million population. Population: Population of the country Continent: Continent in which the country lies.

    Acknowledgements

    "https://www.worldometers.info/coronavirus/"

  13. COVID-19 cases by Continent

    • kaggle.com
    Updated Jun 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OJ (2020). COVID-19 cases by Continent [Dataset]. http://doi.org/10.34740/kaggle/dsv/1238081
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    OJ
    Description

    Context

    Late in December 2019, the World Health Organisation (WHO) China Country Office obtained information about severe pneumonia of an unknown cause, detected in the city of Wuhan in Hubei province, China. This later turned out to be the novel coronavirus disease (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of the coronavirus family. The disease causes respiratory illness characterized by primary symptoms like cough, fever, and in more acute cases, difficulty in breathing. WHO later declared COVID-19 as a Pandemic because of its fast rate of spread across the Globe.

    Content

    The COVID-19 datasets organized by continent contain daily level information about the COVID-19 cases in the different continents of the world. It is a time-series data and the number of cases on any given day is cumulative. The original datasets can be found on this John Hopkins University Github repository. I will be updating the COVID-19 datasets on a daily basis, with every update from John Hopkins University. I have also included the World COVID-19 tests data scraped from Worldometer and 2020 world population also scraped from worldometer.

    The datasets

    COVID-19 cases covid19_world.csv. It contains the cumulative number of COVID-19 cases from around the world since January 22, 2020, as compiled by John Hopkins University. covid19_asia.csv, covid19_africa.csv, covid19_europe.csv, covid19_northamerica.csv, covid19.southamerica.csv, covid19_oceania.csv, and covid19_others.csv. These contain the cumulative number of COVID-19 cases organized by the continent.

    Field description - ObservationDate: Date of observation in YY/MM/DD - Country_Region: name of Country or Region - Province_State: name of Province or State - Confirmed: the number of COVID-19 confirmed cases - Deaths: the number of deaths from COVID-19 - Recovered: the number of recovered cases - Active: the number of people still infected with COVID-19 Note: Active = Confirmed - (Deaths + Recovered)

    COVID-19 tests covid19_tests.csv. It contains the cumulative number of COVID tests data from worldometer conducted since the onset of the pandemic. Data available from June 01, 2020.

    Field description Date: date in YY/MM/DD Country, Other: Country, Region, or dependency TotalTests: cumulative number of tests up till that date Population: population of Country, Region, or dependency Tests/1M pop: tests per 1 million of the population 1 Testevery X ppl: 1 test for every X number of people

    2020 world population world_population(2020).csv. It contains the 2020 world population as reported by woldometer.

    Field description Country (or dependency): Country or dependency Population (2020): population in 2020 Yearly Change: yearly change in population as a percentage Net Change: the net change in population Density(P/km2): population density Land Area(km2): land area Migrants(net): net number of migrants Fert. Rate: Fertility Rate Med. Age: median age Urban pop: urban population World Share: share of the world population as a percentage

    Acknowledgements

    1. John Hopkins University for making COVID-19 datasets available to the public: https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
    2. John Hopkins University COVID-19 Dashboard: https://coronavirus.jhu.edu/map.html
    3. COVID-19 Africa dashboard: http://covid-19-africa.sen.ovh/
    4. Worldometer: https://www.worldometers.info/
    5. United Nations Department of General Assembly and Conference Management: https://www.un.org/depts/DGACM/RegionalGroups.shtml
    6. wallpapercave.com: https://wallpapercave.com/covid-19-wallpapers
  14. SOW-VU Database for West Africa - ClimAfrica WP5

    • data.amerigeoss.org
    • data.apps.fao.org
    http, pdf, png, zip
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). SOW-VU Database for West Africa - ClimAfrica WP5 [Dataset]. https://data.amerigeoss.org/dataset/c9dc82a0-61c9-4c12-a5fe-0835a16bcb17
    Explore at:
    pdf, http, png, zipAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    SOW-VU "Africa in maps" database updated from van Wesenbeeck and Merbis, 2012. These include population maps (total, urban, rural, refugees/IDPs), food aid distribution, and estimates of total production measured in mt cereal equivalents per capita. This data set have been used to complement the survey data and included in the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 5 (WP5). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata. The study in WP5 aimed to identify, locate and characterize groups that are vulnerable for climate change conditions in two country clusters; one in West Africa (Benin, Burkina Faso, Côte d'Ivoire, Ghana, and Togo) and one in East Africa (Sudan, South Sudan and Uganda). Data used for the study include the Demographic and Health Surveys (DHS) , the Multi Indicator Cluster Survey (MICS) and the Afrobarometer surveys for the socio-economic variables and grid level data on agro-ecological and climatic conditions.

    Data publication: 2013-08-01

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Lia van Wesenbeeck

    Resource Contact: Ben Sonneveld

    Resource constraints:

    copyright

    Online resources:

    SOW-VU Database for West Africa

    A spatially explicit assessment of specific vulnerabilities of the food system due to climate change and the identification of their causes; Technical report

    Scenarios of major production systems in Africa

    Climafrica - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  15. Vulnerable population identified by children's weight for age indicator in...

    • data.amerigeoss.org
    • stars4water.openearth.nl
    • +1more
    http, pdf, png, zip
    Updated Feb 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Vulnerable population identified by children's weight for age indicator in West Africa - ClimAfrica WP5 [Dataset]. https://data.amerigeoss.org/dataset/8d76e466-0085-44ff-9e78-070b10b1a61b
    Explore at:
    zip, png, pdf, httpAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    West Africa, Africa
    Description

    Vulnerable population identified by the nutritional status of children (weight for age and weight for height) as indicators for food security, in sample of households in West Africa study area. Data based on DHS and MICS surveys. In defining vulnerability, WFP (2009) and IFPRI (2012) have been followed and combined with indicators for food security with health indicators that signal vulnerability in a physical sense. IFPRI's Global Hunger Index uses three indicators to measure hunger: the number of adults being undernourished, the number of children that have low weight for age, and child mortality. Other classifications of food security use the variety of the diet as an indicator, combined with anthropometric data on children. However, in the DHS data there were no information available on child mortality, nor on dietary composition. Given these data limitations, data on nutritional status of women (Body Mass Index, BMI) for women and children (weight for age and weight for height) have been used as indicators for food security. These data were combined with data on morbidity among adults and children, specifically the occurrence of malaria, cough, and diarrhea. Combinations of indicators have led to a classification of households as being very vulnerable, vulnerable, nearly vulnerable and not vulnerable.

    This data set was produced in the framework of the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 5 (WP5). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    This study in WP5 aimed to identify, locate and characterize groups that are vulnerable for climate change conditions in two country clusters; one in West Africa (Benin, Burkina Faso, Côte d’Ivoire, Ghana, and Togo) and one in East Africa (Sudan, South Sudan and Uganda). Data used for the study include the Demographic and Health Surveys (DHS) , the Multi Indicator Cluster Survey (MICS) and the Afrobarometer surveys for the socio-economic variables and grid level data on agro-ecological and climatic conditions.

    Data publication: 2013-08-01

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Lia van Wesenbeeck

    Resource Contact: Ben Sonneveld

    Resource constraints:

    copyright

    Online resources:

    Weight for age <-3DS, % of population - Distribution in sample of households in West Africa

    Weight for age -2SD --3SD, % of population - Distribution in sample of households in West Africa

    Weight for age -2SD--0, % of population - Distribution in sample of households in West Africa

    Weight for age >0SD, % of population - Distribution in sample of households in West Africa

    A spatially explicit assessment of specific vulnerabilities of the food system due to climate change and the identification of their causes; Technical report

    Scenarios of major production systems in Africa

    Climafrica - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  16. n

    Data from: Continent-wide effects of urbanization on bird and mammal genetic...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Jan 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chloé Schmidt; Michael Domaratzki; Riikka Kinnunen; Jeff Bowman; Colin Garroway (2020). Continent-wide effects of urbanization on bird and mammal genetic diversity [Dataset]. http://doi.org/10.5061/dryad.cz8w9gj0c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 20, 2020
    Dataset provided by
    Ministry of Natural Resources and Forestry
    University of Manitoba
    Authors
    Chloé Schmidt; Michael Domaratzki; Riikka Kinnunen; Jeff Bowman; Colin Garroway
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Urbanization and associated environmental changes are causing global declines in vertebrate populations. In general, population declines of the magnitudes now detected should lead to reduced effective population sizes for animals living in proximity to humans and disturbed lands. This is cause for concern because effective population sizes set the rate of genetic diversity loss due to genetic drift, the rate of increase in inbreeding, and the efficiency with which selection can act on beneficial alleles. We predicted that the effects of urbanization should decrease effective population size and genetic diversity, and increase population-level genetic differentiation. To test for such patterns, we repurposed and reanalyzed publicly archived genetic data sets for North American birds and mammals. After filtering, we had usable raw genotype data from 85 studies and 41,023 individuals, sampled from 1,008 locations spanning 41 mammal and 25 bird species. We used census-based urban-rural designations, human population density, and the Human Footprint Index as measures of urbanization and habitat disturbance. As predicted, mammals sampled in more disturbed environments had lower effective population sizes and genetic diversity, and were more genetically differentiated from those in more natural environments. There were no consistent relationships detectable for birds. This suggests that, in general, mammal populations living near humans may have less capacity to respond adaptively to further environmental changes, and be more likely to suffer from effects of inbreeding.

  17. e

    Popular Protest in Late Medieval English Towns, 1196-1452 - Dataset - B2FIND...

    • b2find.eudat.eu
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Popular Protest in Late Medieval English Towns, 1196-1452 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/c66b0124-cf3a-55f4-9bf9-6e1dc6546f5c
    Explore at:
    Dataset updated
    May 8, 2023
    Description

    DOI Abstract copyright UK Data Service and data collection copyright owner. For popular revolt in late-medieval English towns the assumption has been that little happened there. The theatre of medieval English class conflict, instead, was the countryside, where revolt has been studied more thoroughly in England than for any area of medieval Europe. From a reading of over ninety chronicles, the voluminous Calendar of Patent Rolls, and numerous other crown and municipal records, the project has redressed this imbalance. It has uncovered and analysed around 700 incidents of popular protest, 1196 and 1452. For the first time, moreover, research on English revolts in towns has been placed in a wider comparative continental context and has shown profound differences between England and the continent in the trajectories and character of revolt. Economic and ecological factors played less a role in sparking revolt in England than on the continent: the ebb and flow of English revolts, instead, was more dependent on high politics—dynastic and baronial conflict and at moments of weak kingship. The project has demonstrated that the difference in popular protest between England and the continent resulted from the precociousness of the English state, its structure of courts and law enforcement and the growth of centralized royal power over the two-and-a-half centuries of this study. Because of this development of repressive forces, the character of popular protest in late medieval England began to resemble more closely that found on the continent during the sixteenth and seventeenth centuries, when the gulf between the ruled and rulers had widened. Main Topics: The first table records revolts, popular protests and popular movements found in our survey of voluminous Calendar of Patent Rolls from the mid-thirteenth century to the end of their publication in 1452, including date of incident; type of document (pardon, commission of oyer et terminer, royal mandate, etc); place of the revolt's occurrence; complainant (mayor, bishop, king etc), number accused, occupations, summary of incident, penalties, comment. The second table records revolts et al. within over 90 chronicles survey: these include name of chronicler, type of movement, revolt, etc. such as tax revolt, student revolt, etc; date, place of incident, name of revolt (if given), such as Cade's Revolt; participants, such as craftsmen, burghers, etc; numbers involved (if given), leaders, chants, actions, cause, repression, comments=summary of case.

  18. Richness index (2010) - ClimAfrica WP4

    • data.amerigeoss.org
    • stars4water.openearth.nl
    • +1more
    http, pdf, png, wms +1
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Richness index (2010) - ClimAfrica WP4 [Dataset]. https://data.amerigeoss.org/dataset/5d112b2b-9793-4484-808c-4a6172c5d4d0
    Explore at:
    png, pdf, http, zip, wmsAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The “richness index” represents the level of economical wellbeing a country certain area in 2010. Regions with higher income per capita and low poverty rate and more access to market are wealthier and are therefore better able to prepare for and respond to adversity. The index results from the second cluster of the Principal Component Analysis preformed among 9 potential variables. The analysis identifies four dominant variables, namely “GDPppp per capita”, “agriculture share GDP per agriculture sector worker”, “poverty rate” and “market accessibility”, assigning weights of 0.33, 0.26, 0.25 and 0.16, respectively. Before to perform the analysis all variables were log transformed (except the “agriculture share GDP per agriculture sector worker”) to shorten the extreme variation and then were score-standardized (converted to distribution with average of 0 and standard deviation of 1; inverse method was applied for the “poverty rate” and “market accessibility”) in order to be comparable. The 0.5 arc-minute grid total GDPppp is based on the night time light satellite imagery of NOAA (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161) and adjusted to national total as recorded by International Monetary Fund for 2010. The “GDPppp per capita” was calculated dividing the total GDPppp by the population in each pixel. Further, a focal statistic ran to determine mean values within 10 km. This had a smoothing effect and represents some of the extended influence of intense economic activity for the local people. Country based data for “agriculture share GDP per agriculture sector worker” were calculated from GDPppp (data from International Monetary Fund) fraction from agriculture activity (measured by World Bank) divided by the number of worker in the agriculture sector (data from World Bank). The tabular data represents the average of the period 2008-2012 and were linked by country unit to the national boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The first administrative level data for the “poverty rate” were estimated by NOAA for 2003 using nighttime lights satellite imagery. Tabular data were linked by first administrative unit to the first administrative boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The 0.5 arc-minute grid “market accessibility” measures the travel distance in minutes to large cities (with population greater than 50,000 people). This dataset was developed by the European Commission and the World Bank to represent access to markets, schools, hospitals, etc.. The dataset capture the connectivity and the concentration of economic activity (in 2000). Markets may be important for a variety of reasons, including their abilities to spread risk and increase incomes. Markets are a means of linking people both spatially and over time. That is, they allow shocks (and risks) to be spread over wider areas. In particular, markets should make households less vulnerable to (localized) covariate shocks. This dataset has been produced in the framework of the “Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)” project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    Data publication: 2014-05-15

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Selvaraju Ramasamy

    Resource constraints:

    copyright

    Online resources:

    Richness index (2010)

    Project deliverable D4.1 - Scenarios of major production systems in Africa

    Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  19. Vulnerable population identified by BMI indicator in East Africa -...

    • data.amerigeoss.org
    • data.apps.fao.org
    • +1more
    http, pdf, png, zip
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Vulnerable population identified by BMI indicator in East Africa - ClimAfrica WP5 [Dataset]. https://data.amerigeoss.org/dataset/78f3df43-5794-4ad9-9f5c-27c599d96335
    Explore at:
    zip, pdf, png, httpAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    East Africa, Africa
    Description

    Vulnerable population identified by the nutritional status of women (BMI) as indicator for food security, in sample of households in East Africa study area. Data based on DHS and MICS surveys. In defining vulnerability, WFP (2009) and IFPRI (2012) have been followed and combined with indicators for food security with health indicators that signal vulnerability in a physical sense. IFPRI's Global Hunger Index uses three indicators to measure hunger: the number of adults being undernourished, the number of children that have low weight for age, and child mortality. Other classifications of food security use the variety of the diet as an indicator, combined with anthropometric data on children. However, in the DHS data there were no information available on child mortality, nor on dietary composition. Given these data limitations, data on nutritional status of women (Body Mass Index, BMI) for women and children (weight for age) have been used as indicators for food security. These data were combined with data on morbidity among adults and children, specifically the occurrence of malaria, cough, and diarrhea. Combinations of indicators have led to a classification of households as being very vulnerable, vulnerable, nearly vulnerable and not vulnerable. This data set was produced in the framework of the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 5 (WP5). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata. This study in WP5 aimed to identify, locate and characterize groups that are vulnerable for climate change conditions in two country clusters; one in West Africa (Benin, Burkina Faso, Côte d'Ivoire, Ghana, and Togo) and one in East Africa (Sudan, South Sudan and Uganda). Data used for the study include the Demographic and Health Surveys (DHS) , the Multi Indicator Cluster Survey (MICS) and the Afrobarometer surveys for the socio-economic variables and grid level data on agro-ecological and climatic conditions.

    Data publication: 2013-08-01

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Lia van Wesenbeeck

    Resource Contact: Ben Sonneveld

    Resource constraints:

    copyright

    Online resources:

    BMI <16, % of population - Distribution in sample of households in East Africa

    BMI 16-18.3, % of population - Distribution in sample of households in East Africa

    BMI 18.3-18.6, % of population - Distribution in sample of households in East Africa

    BMI >18.6, % of population - Distribution in sample of households in East Africa

    A spatially explicit assessment of specific vulnerabilities of the food system due to climate change and the identification of their causes; Technical report

    CLIMAFRICA – Climate change predictions in Sub-Saharan Africa: impacts and adaptations

    Scenarios of major production systems in Africa

  20. d

    Global Rural-Urban Mapping Project (GRUMP), Alpha Version.

    • datadiscoverystudio.org
    • data.wu.ac.at
    jsp
    Updated Jul 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global Rural-Urban Mapping Project (GRUMP), Alpha Version. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/3494372fe7ee4859a16970d5be1eb445/html
    Explore at:
    jspAvailable download formats
    Dataset updated
    Jul 1, 2018
    Description

    description: The Global Rural-Urban Mapping Project (GRUMP), Alpha Version consists of estimates of human population for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated datasets dated circa 2000. The data products include population count grids (raw counts), population density grids (per square km), land area grids (actual area net of ice and water), mean geographic unit area grids, urban extents grids, centroids, a national identifier grid, national boundaries, coastlines, and settlement points. These products vary in GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic units, is used to assign population values to grid cells. Additional global grids are created from the 30 arc-second grid at 1/4, 1/2, and 1 degree resolutions. The Spatial Reference metadata section information applies only to global extent, 30 arc-second resolution. This dataset is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT). (Suggested Usage: To allow analysis of urban and rural population figures based on a consistent global dataset.); abstract: The Global Rural-Urban Mapping Project (GRUMP), Alpha Version consists of estimates of human population for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated datasets dated circa 2000. The data products include population count grids (raw counts), population density grids (per square km), land area grids (actual area net of ice and water), mean geographic unit area grids, urban extents grids, centroids, a national identifier grid, national boundaries, coastlines, and settlement points. These products vary in GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic units, is used to assign population values to grid cells. Additional global grids are created from the 30 arc-second grid at 1/4, 1/2, and 1 degree resolutions. The Spatial Reference metadata section information applies only to global extent, 30 arc-second resolution. This dataset is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT). (Suggested Usage: To allow analysis of urban and rural population figures based on a consistent global dataset.)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
Organization logo

World Population Dataset

Country and Continent Wise World Population Dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Sep 2, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Amit Kumar Sahu
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

  1. Continent Population Characteristics Analysis.
  2. Analysis of Countries.
    • Top 10 Most Populated and Least Populated Countries
    • Top 10 Largest and Smallest Countries as per Area
    • Population Growth From 1970 to 2020 (50 Years)
  3. Countries Represent % Of World Population.
    • Countries that represent below 0.1% of the World Population.
    • Countries that represent above 2% of the world Population
    • Top 10 Over Populated Countries based on Density Per Sq KM.
    • Top 10 Least Populated Countries based on Density Per Sq KM.
Search
Clear search
Close search
Google apps
Main menu