19 datasets found
  1. COVID-19 Cases by Country

    • console.cloud.google.com
    Updated Jun 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:European%20Centre%20for%20Disease%20Prevention%20and%20Control&inv=1&invt=Ab1daA (2020). COVID-19 Cases by Country [Dataset]. https://console.cloud.google.com/marketplace/product/european-cdc/covid-19-global-cases
    Explore at:
    Dataset updated
    Jun 3, 2020
    Dataset provided by
    Googlehttp://google.com/
    Description

    This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDC’s Situation Dashboard . More information on ECDC’s response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.

  2. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Oct 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2022). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Oct 6, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  3. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  4. COVID-19 Data Repository by CSSE at JHU

    • console.cloud.google.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Johns%20Hopkins%20University&inv=1&invt=Ab10Aw (2021). COVID-19 Data Repository by CSSE at JHU [Dataset]. https://console.cloud.google.com/marketplace/product/johnshopkins/covid19_jhu_global_case
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Googlehttp://google.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province/state. It was developed to enable researchers, public health authorities and the general public to track the outbreak. Additional information is available in the blog post, Mapping 2019-nCoV , and included data sources are listed here . For publications that use the data, please cite the following publication Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate.

  5. i

    A Dataset on Online Learning-based Web Behavior from Different Countries...

    • ieee-dataport.org
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saumick Pradhan (2022). A Dataset on Online Learning-based Web Behavior from Different Countries Before and After COVID-19 [Dataset]. https://ieee-dataport.org/open-access/dataset-online-learning-based-web-behavior-different-countries-and-after-covid-19
    Explore at:
    Dataset updated
    Apr 27, 2022
    Authors
    Saumick Pradhan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    2022

  6. Countries COVID Cases - History

    • mea-covid-19-esridubaioffice.hub.arcgis.com
    Updated Apr 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Inc. Office in Dubai (2020). Countries COVID Cases - History [Dataset]. https://mea-covid-19-esridubaioffice.hub.arcgis.com/datasets/countries-covid-cases-history
    Explore at:
    Dataset updated
    Apr 7, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Inc. Office in Dubai
    Area covered
    Description

    This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, the US, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals). Data sources are WHO, US CDC, China NHC, ECDC, and DXY. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.The data is processed from JHU Services and filtered for the Middle East and Africa Region.

  7. d

    Reporting behavior from WHO COVID-19 public data

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Auss Abbood (2023). Reporting behavior from WHO COVID-19 public data [Dataset]. http://doi.org/10.5061/dryad.9s4mw6mmb
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Auss Abbood
    Time period covered
    Dec 16, 2022
    Description

    Objective Daily COVID-19 data reported by the World Health Organization (WHO) may provide the basis for political ad hoc decisions including travel restrictions. Data reported by countries, however, is heterogeneous and metrics to evaluate its quality are scarce. In this work, we analyzed COVID-19 case counts provided by WHO and developed tools to evaluate country-specific reporting behaviors. Methods In this retrospective cross-sectional study, COVID-19 data reported daily to WHO from 3rd January 2020 until 14th June 2021 were analyzed. We proposed the concepts of binary reporting rate and relative reporting behavior and performed descriptive analyses for all countries with these metrics. We developed a score to evaluate the consistency of incidence and binary reporting rates. Further, we performed spectral clustering of the binary reporting rate and relative reporting behavior to identify salient patterns in these metrics. Results Our final analysis included 222 countries and regions...., Data collection COVID-19 data was downloaded from WHO. Using a public repository, we have added the countries' full names to the WHO data set using the two-letter abbreviations for each country to merge both data sets. The provided COVID-19 data covers January 2020 until June 2021. We uploaded the final data set used for the analyses of this paper. Data processing We processed data using a Jupyter Notebook with a Python kernel and publically available external libraries. This upload contains the required Jupyter Notebook (reporting_behavior.ipynb) with all analyses and some additional work, a README, and the conda environment yml (env.yml)., Any text editor including Microsoft Excel and their free alternatives can open the uploaded CSV file. Any web browser and some code editors (like the freely available Visual Studio Code) can show the uploaded Jupyter Notebook if the required Python environment is set up correctly.

  8. g

    Demographics

    • health.google.com
    Updated Oct 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Demographics [Dataset]. https://health.google.com/covid-19/open-data/raw-data
    Explore at:
    Dataset updated
    Oct 7, 2021
    Variables measured
    key, population, population_male, rural_population, urban_population, population_female, population_density, clustered_population, population_age_00_09, population_age_10_19, and 11 more
    Description

    Various population statistics, including structured demographics data.

  9. e

    COVID-19 Cases US

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +7more
    Updated Mar 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). COVID-19 Cases US [Dataset]. https://coronavirus-resources.esri.com/datasets/628578697fb24d8ea4c32fa0c5ae1843
    Explore at:
    Dataset updated
    Mar 21, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data

  10. f

    Data_Sheet_1_Anticipating the Novel Coronavirus Disease (COVID-19)...

    • frontiersin.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taranjot Kaur; Sukanta Sarkar; Sourangsu Chowdhury; Sudipta Kumar Sinha; Mohit Kumar Jolly; Partha Sharathi Dutta (2023). Data_Sheet_1_Anticipating the Novel Coronavirus Disease (COVID-19) Pandemic.PDF [Dataset]. http://doi.org/10.3389/fpubh.2020.569669.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Taranjot Kaur; Sukanta Sarkar; Sourangsu Chowdhury; Sudipta Kumar Sinha; Mohit Kumar Jolly; Partha Sharathi Dutta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The COVID-19 outbreak was first declared an international public health, and it was later deemed a pandemic. In most countries, the COVID-19 incidence curve rises sharply over a short period of time, suggesting a transition from a disease-free (or low-burden disease) equilibrium state to a sustained infected (or high-burden disease) state. Such a transition is often known to exhibit characteristics of “critical slowing down.” Critical slowing down can be, in general, successfully detected using many statistical measures, such as variance, lag-1 autocorrelation, density ratio, and skewness. Here, we report an empirical test of this phenomena on the COVID-19 datasets of nine countries, including India, China, and the United States. For most of the datasets, increases in variance and autocorrelation predict the onset of a critical transition. Our analysis suggests two key features in predicting the COVID-19 incidence curve for a specific country: (a) the timing of strict social distancing and/or lockdown interventions implemented and (b) the fraction of a nation's population being affected by COVID-19 at that time. Furthermore, using satellite data of nitrogen dioxide as an indicator of lockdown efficacy, we found that countries where lockdown was implemented early and firmly have been successful in reducing COVID-19 spread. These results are essential for designing effective strategies to control the spread/resurgence of infectious pandemics.

  11. e

    Cases country

    • coronavirus-resources.esri.com
    • share-open-data-covid-19-date-format-issue-ess.hub.arcgis.com
    Updated Feb 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Cases country [Dataset]. https://coronavirus-resources.esri.com/datasets/bbb2e4f589ba40d692fab712ae37b9ac
    Explore at:
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and the latest trend plot. It covers the US (county or state level), China, Canada, Australia (province/state level), and the rest of the world (country/region level, represented by either the country centroids or their capitals). Data sources are WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, the COVID Tracking Project (testing and hospitalizations), state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team, JHU APL and JHU Data Services. This layer is opened to the public and free to share. Contact us.

  12. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +5more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Google Searchhttp://google.com/
    Googlehttp://google.com/
    Authors
    Google
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  13. a

    COVID-19 in the Capital Region

    • city-albanyny-gis.hub.arcgis.com
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Albany GIS Services (2020). COVID-19 in the Capital Region [Dataset]. https://city-albanyny-gis.hub.arcgis.com/datasets/covid-19-in-the-capital-region
    Explore at:
    Dataset updated
    Mar 31, 2020
    Dataset authored and provided by
    City of Albany GIS Services
    Area covered
    Capital District, New York
    Description

    This dashboard created by Operations Dashboard contains the most up-to-date coronavirus COVID-19 cases and latest trend plot. It covers China, the US, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals). Data sources are WHO, US CDC, China NHC, ECDC, and DXY. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This service is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share.

  14. m

    The collection of narratives on face mask wearing written by members of...

    • data.mendeley.com
    • narcis.nl
    Updated Dec 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucia Martinelli (2020). The collection of narratives on face mask wearing written by members of scholarly association Navigating Knowledge Landscapes Network in May 2020 [Dataset]. http://doi.org/10.17632/9s6fm7vdbc.1
    Explore at:
    Dataset updated
    Dec 18, 2020
    Authors
    Lucia Martinelli
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    The data collected in this dataset are narratives exploring public policies, attitudes, individual behaviors, and the collective experiences of the affected communities regarding face mask wearing at the onset of the COVID-19 pandemic. The narratives were written by the members of the interdisciplinary research network Navigating Knowledge Landscapes (NKL; http://knowledge-landscapes.hiim.hr/). The members of the network are scholars belonging to different research disciplines and the aim of the network is to explore and discuss the individual aspects of citizens’ navigation of (new) knowledge in the digital society. An invitation to participate in this study was sent to 97 members of the network on May 11, 2020, the written responses in the form of narratives were collected until May 26, 2020. In total, 29 scholars from 22 countries responded by providing their narratives, all of them collected in this dataset. The authors belong to 9 different academic disciplines with majority of them having background in Life Sciences, Sociology, Philosophy and Medicine. The authors described in their narratives the use of face masks in their countries according to their subjective point of view, and/or how people from their social environment perceive it. The participants were asked to answer the following questions in their narratives: • Part 1: What are the rules adopted in your country about face mask wearing? What would be the overall approach for use of the face masks in your community (government instructions, availability, the citizen compliance)? • Part 2: What is your individual/personal attitude and practice in relation to face masks? If applicable, start with good practice and end with what you consider to be mistakes. • Part 3: How do you judge the behavior of people you encounter? Face masks (or no face masks) and interpersonal interactions. Again, start with positive and end with negative. • Part 4 (optional): free to say whatever you think is important to the practices of your community in relation to face masks. Although standard questions were asked, we let scholars to answer them in open-ended text. No corrections or modifications were applied to the narratives, including no proofreading or grammatical checks. The authors agreed that their narratives can be published under their full name and affiliation, and the resulting collection used for research purposes. Ethical approval for this study was obtained from The University of Edinburgh, Scotland, UK and the University of Zagreb, Faculty of Croatian Studies, Croatia.

  15. Date of the first COVID-19 case reported in Africa.

    • plos.figshare.com
    xlsx
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Fulk; Daniel Romero-Alvarez; Qays Abu-Saymeh; Jarron M. Saint Onge; A. Townsend Peterson; Folashade B. Agusto (2023). Date of the first COVID-19 case reported in Africa. [Dataset]. http://doi.org/10.1371/journal.pone.0269573.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Alexander Fulk; Daniel Romero-Alvarez; Qays Abu-Saymeh; Jarron M. Saint Onge; A. Townsend Peterson; Folashade B. Agusto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Results of multiple linear regression analysis performed between COVID-19 incidence and Google Health Trends search queries from four selected terms. (XLSX)

  16. d

    Mortality net, Mortality rate, Excess deaths and Variation of Excess deaths...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grossi Morato, Eric (2023). Mortality net, Mortality rate, Excess deaths and Variation of Excess deaths in Brazil per state Jan 2014 to Aug 2021 [Dataset]. http://doi.org/10.7910/DVN/NFL2YW
    Explore at:
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Grossi Morato, Eric
    Time period covered
    Jan 1, 2014 - Jun 30, 2021
    Area covered
    Brazil
    Description

    The excess of monthly deaths by state in Brazil, mainly in 2021, point to an unprecedented mortuary catastrophe in Brazil How has the government of Brazil acted and has acted to protect its citizens from the most important, intense and deadly event of all time, in these 521 years of Brazilian history? How great is the risk of death that its inhabitants are facing, is it possible to measure and compare with other similar human beings, but who have different governments? Can we really measure, based on scientific, safe and verified data, the performance, willingness and result of actions and even the examples that the federal government of Brazil promoted in 18 months of the years 2020 and 2021? YES, we can ! Fortunately, in this era of free and unquestionable virtual environments, it is possible to develop reliable and fast ways to search, classify, verify, index, compare and publish known health epidemiological indices of human health! The internet and the Dataverse of the Harvard School allowed, not only scientists and physicians, as any being on Earth, to consult, understand and compare results that will remain available for generations, between the past and the present, but also between countries, as in this set we deal with the safest and most important health index, we show absolute numbers of deaths and births... All the most used epidemiological variables of birth and mortality per month in Brazil, from January 2014 to June 2021, by state, country and 2 large groups of states (based on a single criterion - votes Bolsonaro 1st round 2018 > 50%) All most used epidemiological variables from mortality per month in Brazil , Jan-2015 to Jun-2021, per state and country We show the death rate, number of net deaths, excess deaths, births, birth rate, annual growth rate, growth rate variation, P-score, excess mortality rate by months by state (UF), percentage of seniors over 70 years old from January 2014 to June 2021

  17. f

    F test, BP test, and Hausman test.

    • plos.figshare.com
    xls
    Updated Sep 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huafeng Zhai (2023). F test, BP test, and Hausman test. [Dataset]. http://doi.org/10.1371/journal.pone.0290897.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Huafeng Zhai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveThe objective of this study was to identify factors influencing the development of China-ASEAN trade- from the total economic volume of both sides, distance, the population size of ASEAN countries, the construction of a free trade area, and the signing of the Belt and Road initiative, resource endowment per capita, the exchange rate between RMB and ASEAN countries, and the land area of ASEAN countries—to develop a conceptual framework for China-ASEAN trade potential.Study designThis study uses panel data from 2001 to 2021 that is evenly distributed among 10 ASEAN countries to serve as the dataset. Firstly, the unit roots are checked and the cointegration relationships are examined, focusing on the heterogeneity test. Based on the classical trade gravity model, the innovative trade gravity model with key influencing factors is constructed. On the basis of the classical trade gravity model, an innovative trade gravity model of key influencing factors is constructed. The trade potential model is used to calculate the direct trade potential coefficient between China and ASEAN countries, which points out the direction for the sustainability of bilateral trade.ResultsThis study finds that among the factors affecting China-ASEAN bilateral trade, the total economic output of both sides, distance, population size of ASEAN countries, the construction of the FTA, and the signing of the Belt and Road Initiative all have a positive impact on bilateral trade. Three influencing factors, namely per capita resource endowment, exchange rate between RMB and ASEAN countries, and the size of ASEAN countries, have a negative impact on bilateral trade, but to a lesser extent. The trade potential between China and Vietnam falls into the category of potential re-modelling, indicating that both sides are currently utilizing their trade potential to the greatest extent possible, that trade growth space is limited, and that new trade opportunities must be discovered. The trade potential index between China and nine ASEAN countries, excluding Vietnam, is in the potential-exploiting category, indicating that the potential has not been fully utilized by both sides and that there is still room for growth in the scale of trade between the two countries.ConclusionWith the shift of the world’s economic center of gravity in the direction of Asia following COVID-19, China and ASEAN countries should seize the opportunity to strengthen their comprehensive strength and economic aggregates and further develop China’s constructive role in the regional organization. The signing of the Belt and Road Initiative and the construction of a free trade zone has had a positive effect on the development of bilateral trade. Propose that: positive trade factors should continue to be strengthened, trade barriers should be removed, and new dynamics of bilateral trade growth should be enhanced.

  18. f

    Comparison of resilience metrics in China and Europe during COVID-19...

    • figshare.com
    xls
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiuxia Guo; Yang Li; Zongxin Yang; Xinping Zhu (2021). Comparison of resilience metrics in China and Europe during COVID-19 epidemic. [Dataset]. http://doi.org/10.1371/journal.pone.0260940.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    PLOS ONE
    Authors
    Jiuxia Guo; Yang Li; Zongxin Yang; Xinping Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe, China
    Description

    Comparison of resilience metrics in China and Europe during COVID-19 epidemic.

  19. f

    China-ASEAN trade potential index 2012–2021.

    • plos.figshare.com
    xls
    Updated Sep 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huafeng Zhai (2023). China-ASEAN trade potential index 2012–2021. [Dataset]. http://doi.org/10.1371/journal.pone.0290897.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Huafeng Zhai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    ObjectiveThe objective of this study was to identify factors influencing the development of China-ASEAN trade- from the total economic volume of both sides, distance, the population size of ASEAN countries, the construction of a free trade area, and the signing of the Belt and Road initiative, resource endowment per capita, the exchange rate between RMB and ASEAN countries, and the land area of ASEAN countries—to develop a conceptual framework for China-ASEAN trade potential.Study designThis study uses panel data from 2001 to 2021 that is evenly distributed among 10 ASEAN countries to serve as the dataset. Firstly, the unit roots are checked and the cointegration relationships are examined, focusing on the heterogeneity test. Based on the classical trade gravity model, the innovative trade gravity model with key influencing factors is constructed. On the basis of the classical trade gravity model, an innovative trade gravity model of key influencing factors is constructed. The trade potential model is used to calculate the direct trade potential coefficient between China and ASEAN countries, which points out the direction for the sustainability of bilateral trade.ResultsThis study finds that among the factors affecting China-ASEAN bilateral trade, the total economic output of both sides, distance, population size of ASEAN countries, the construction of the FTA, and the signing of the Belt and Road Initiative all have a positive impact on bilateral trade. Three influencing factors, namely per capita resource endowment, exchange rate between RMB and ASEAN countries, and the size of ASEAN countries, have a negative impact on bilateral trade, but to a lesser extent. The trade potential between China and Vietnam falls into the category of potential re-modelling, indicating that both sides are currently utilizing their trade potential to the greatest extent possible, that trade growth space is limited, and that new trade opportunities must be discovered. The trade potential index between China and nine ASEAN countries, excluding Vietnam, is in the potential-exploiting category, indicating that the potential has not been fully utilized by both sides and that there is still room for growth in the scale of trade between the two countries.ConclusionWith the shift of the world’s economic center of gravity in the direction of Asia following COVID-19, China and ASEAN countries should seize the opportunity to strengthen their comprehensive strength and economic aggregates and further develop China’s constructive role in the regional organization. The signing of the Belt and Road Initiative and the construction of a free trade zone has had a positive effect on the development of bilateral trade. Propose that: positive trade factors should continue to be strengthened, trade barriers should be removed, and new dynamics of bilateral trade growth should be enhanced.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
https://console.cloud.google.com/marketplace/browse?filter=partner:European%20Centre%20for%20Disease%20Prevention%20and%20Control&inv=1&invt=Ab1daA (2020). COVID-19 Cases by Country [Dataset]. https://console.cloud.google.com/marketplace/product/european-cdc/covid-19-global-cases
Organization logo

COVID-19 Cases by Country

Explore at:
192 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 3, 2020
Dataset provided by
Googlehttp://google.com/
Description

This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDC’s Situation Dashboard . More information on ECDC’s response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.

Search
Clear search
Close search
Google apps
Main menu