22 datasets found
  1. World Bank Population and Migration Dataset

    • kaggle.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamesh Raj (2024). World Bank Population and Migration Dataset [Dataset]. https://www.kaggle.com/datasets/hameshraj/world-bank-population-and-migration-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hamesh Raj
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Overview: This dataset provides population and migration data for five key South Asian countries: Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka, spanning the years 1960 to 2023. The data, sourced from the World Bank API, sheds light on population growth trends and net migration patterns across these nations, offering rich insights into the region's demographic changes over 63 years.

    Key Features: - Total Population: Yearly population data for five countries. - Net Migration: The net effect of immigration and emigration for each year. - Time Span: Covers data from 1960 to 2023. - Source: Extracted from the official World Bank API, ensuring credibility and accuracy.

    Use Cases: - Explore regional migration trends and their impact on demographics. - Analyze population growth in South Asia. - Compare migration and population patterns among Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka. - Develop predictive models for demographic and migration forecasts.

    About the Data: The dataset is publicly available under the World Bank Open Data License. It can be used freely for educational, research, or commercial purposes with appropriate attribution.

    Columns: - Country: Name of the country (Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka). - Year: The year of recorded data. - Total Population: Total population of the country for the given year. - Net Migration: Net migration value (immigration minus emigration).

    Key Insights (1960–2023) - Pakistan: Steady growth from 45M (1960) to 240M (2023), with varying migration trends influenced by political and economic changes. - India: Rapid increase from 450M (1960) to 1.43B (2023), with consistently low net migration. - Bangladesh: Population rose from 55M (1960) to 170M (2023), showing negative net migration due to significant emigration. - Afghanistan: Marked by volatile migration due to conflict; population increased from 8M (1960) to 41M (2023). - Sri Lanka: Moderate growth from 10M (1960) to 22M (2023), with net migration losses during periods of civil unrest.

  2. f

    Rule of Thumb for correlation coefficients.

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiuling Guo; Muhammad Islam (2025). Rule of Thumb for correlation coefficients. [Dataset]. http://doi.org/10.1371/journal.pone.0324231.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Xiuling Guo; Muhammad Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rising global food insecurity driven by population growth needs urgent measure for universal access to food. This research employs Comparative Performance Analysis (CPA) to evaluate the Global Food Security Index (GFSI), its components [Affordability (AF), Availability (AV), Quality & Safety (Q&S) and Sustainability & Adaptation (S&A)] in tandem with Annual Population Change (APC) for world’s five most populous countries (India, China, USA, Indonesia and Pakistan) using dataset spanning from 2012 to 2022. CPA is applied using descriptive analysis, correlation analysis, Rule of Thumb (RoT) and testing of hypothesis etc. RoT is used with a new analytical approach by applying the significance measures for correlation coefficients. The study suggests that India should enhance its GFSI rank by addressing AF and mitigating the adverse effects of APC on GFSI with a particular focus on Q&S and S&A. China needs to reduce the impact of APC on GFSI by prioritizing AV and S&A. The USA is managing its GFSI well, but focused efforts are still required to reduce APC’s impact on Q&S and S&A. Indonesia should improve across all sectors with a particular focus on APC reduction and mitigating its adverse effects on AF, AV, and S&A. Pakistan should intensify efforts to boost its rank and enhance all sectors with reducing APC. There is statistically significant and negative relation between GFSI and APC for China, Indonesia and found insignificant for others countries. This study holds promise for providing crucial policy recommendations to enhance food security by tackling its underlying factors.

  3. Country resolved combined emission and socio-economic pathways based on the...

    • zenodo.org
    csv, pdf
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Gütschow; Johannes Gütschow; M. Louise Jeffery; Annika Günther; Annika Günther; Malte Meinshausen; M. Louise Jeffery; Malte Meinshausen (2024). Country resolved combined emission and socio-economic pathways based on the RCP and SSP scenarios [Dataset]. http://doi.org/10.5281/zenodo.3638137
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Johannes Gütschow; Johannes Gütschow; M. Louise Jeffery; Annika Günther; Annika Günther; Malte Meinshausen; M. Louise Jeffery; Malte Meinshausen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recommended citation

    Article citation will be added once the article is available.

    Content

    Use of the dataset and full description

    Before using the dataset, please read this document and the article describing the methodology, especially the "Discussion and limitations" section.

    The article will be referenced here as soon as it is published.

    Please notify us (johannes.guetschow@pik-potsdam.de) if you use the dataset so that we can keep track of how it is used and take that into consideration when updating and improving the dataset.

    When using this dataset or one of its updates, please cite the DOI of the precise version of the dataset used and also the data description article which this dataset is supplement to (see above). Please consider also citing the relevant original sources when using the RCP-SSP-dwn dataset. See the full citations in the References section further below.

    Support

    If you encounter possible errors or other things that should be noted or need support in using the dataset or have any other questions regarding the dataset, please contact johannes.guetschow@pik-potsdam.de.

    Abstract

    This dataset provides country scenarios, downscaled from the RCP (Representative Concentration Pathways) and SSP (Shared Socio-Economic Pathways) scenario databases, using results from the SSP GDP (Gross Domestic Product) country model results as drivers for the downscaling process harmonized to and combined with up to date historical data.

    Files included in the dataset

    The repository comprises several datasets. Each dataset comes in a csv file. The file name is constructed from dataset properties as follows:

    The "Source" flag indicates which input scenarios were used.

    • PMRCP: RCP scenarios downscaled using the SSPs: emissions and socio-economic data; scenarios are available both harmonized to historical data and non-harmonized.
    • PMSSP: Downscaled SSP IAM scenarios: emissions and socio-economic data; scenarios are available both harmonized to historical data and non-harmonized.

    the "Bunkers" flag indicates if the input emissions scenarios have been corrected for emissions from international shipping and aviation (bunkers) before downscaling to country level or not. The flag is "B" for scenarios where emissions from bunkers have been removed before downscaling and "" (no flag) where they have not been removed.

    The "Downscaling" flag indicates the downscaling technique used.

    • IE: Convergence downscaling with exponential convergence of emissions intensities and convergence before transition to negative emissions.
    • IC: Regional emission intensity growth rates for all countries.
    • CS: Constant emission shares as a reference case independent of the socio-economic scenario.

    All files contain data for all countries and variables. For detailed methodology descriptions we refer to the paper this dataset is a supplement to. A reference to the paper will be added as soon as it is published.

    Finally the data description including detailed references is included: RCP-SSP-dwn_v1.0_data_description.pdf.

    Notes

    If you encounter problems with the size of the csv files please let us know, so we can find solutions for future releases of the data.

    Data format description (columns)

    "source"

    For PMRCP files source values are

    • RCPSSP
    • PMRCP
    • PMRCPMISC

    For PMSSP files source values are

    • SSPIAM
    • PMSSP
    • PMSSPMISC

    For possible values of

    "scenario"

    For PMRCP files the scenarios have the format

    For PMSSP files the scenarios have the format

    Model codes in scenario names

    • AIMCGE: AIM-CGE
    • IMAGE: IMAGE
    • GCAM4: GCAM
    • MESGB: MESSAGE-GLOBIOM
    • REMMP: REMIND-MAGPIE
    • WITGB: WITCH-GLOBIOM

    "country"

    ISO 3166 three-letter country codes or custom codes for groups:

    Additional "country" codes for country groups.

    • EARTH: Aggregated emissions for all countries
    • ANNEXI: Annex I Parties to the UNFCCC
    • NONANNEXI: Non-Annex I Parties to the UNFCCC
    • AOSIS: Alliance of Small Island States
    • BASIC: BASIC countries (Brazil, South Africa, India and China)
    • EU28: European Union (still including the UK)
    • LDC: Least Developed Countries
    • UMBRELLA: Umbrella Group

    "category"

    Category descriptions.

    • IPCM0EL: Emissions: National Total excluding LULUCF
    • ECO: Economical data
    • DEMOGR: Demographical data

    "entity"

    Gases and gas baskets using global warming potentials (GWP) from either Second Assessment Report (SAR) or Fourth Assessment Report (AR4).

    Gases / gas baskets and underlying global warming potentials

    • CH4: Methane (CH4)
    • CO2: Carbon Dioxide (CO2)
    • N2O: Nitrous Oxide (N2O)
    • FGASES: Fluorinated Gases (SAR): HFCs, PFCs, SF6, NF3
    • FGASESAR4: Fluorinated Gases (AR4): HFCs, PFCs, SF6, NF3
    • KYOTOGHG: Kyoto greenhouse gases (SAR)
    • KYOTOGHGAR4: Kyoto greenhouse gases (AR4)

    "unit"

    The following units are used:

    • Million2011GKD: Million 2011 international dollars
    • ThousandPers: Thousand persons
    • kt: kilotonnes
    • Mt: Megatonnes
    • Gg: Gigagrams
    • MtCO2eq: Megatonnes of CO2 equivalents using the GWPs defined by "entity"
    • GgCO2eq: Gigagrams of CO2 equivalents using the GWPs defined by "entity"

    Remaining columns

    Years from 1850-2100.

    Data Sources

    The following data sources were used during the generation of this dataset:

    Scenario data

    Historical data

  4. m

    Comparison of the natural increase rate in the Russian Federation, Republic...

    • data.mendeley.com
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timofey Bezuglyy (2025). Comparison of the natural increase rate in the Russian Federation, Republic of Kazakhstan, Republic of Belarus, Kyrgyz Republic, and Republic of Estonia for the period from 1990 to 2024 [Dataset]. http://doi.org/10.17632/nmdyn28mxv.1
    Explore at:
    Dataset updated
    May 1, 2025
    Authors
    Timofey Bezuglyy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Belarus, Kazakhstan, Estonia, Russia, Kyrgyzstan
    Description

    Since 1991, the governments of 15 countries, formerly integrated into a unified cultural, economic, social, and legal framework within the Union of Soviet Socialist Republics, have sequentially decided to secede from the union and build sovereign nation-states with independent foreign and domestic policies. The dataset has been compiled with the aim of studying the demographic policies of post-Soviet countries, including the Russian Federation, Republic of Kazakhstan, Republic of Belarus, Kyrgyz Republic, and Republic of Estonia. For consistency in comparison, demographic statistics were obtained from a single source: the non-profit, non-governmental resource “Database.earth,” which bases its data on the report titled “2024 Revision of World Population Prospects” prepared by the Department of Economic and Social Affairs of the United Nations.The files include two tables (with corresponding charts): 1. The natural increase rate in the studied countries over the period from 1990 to 2024. 2. Urban-rural population ratio in the studied countries as of 2024. The natural increase rate is a standardized indicator that allows comparisons between different states regardless of their size or level of economic development. Private trends for individual states. 1. The Russian Federation. After a stable period of positive growth in the late 1980s, the country faced a deep crisis in the first half of the 1990s (-5.7% in 1995). By the beginning of the 21st century, dynamics stabilized, but the overall trend remains negative. Attempts to restore fertility led to temporary improvement in 2015 (+0.3%). 2. Republic of Kazakhstan. The country maintained a positive growth dynamic almost throughout the observation period. The highest peak of growth falls on the early 2010s (13.6% in 2010, 15.2% in 2015), demonstrating high rates of population reproduction. However, by the end of the observed period (2024), there is also a gradual slowdown in growth noted. 3. Republic of Belarus. The situation in Belarus is characterized by alternating positive and negative phases. The beginning of the 1990s was marked by a significant drop, followed by a weak recovery period. Nevertheless, the general tendency is towards maintaining low levels of growth, transitioning into an insignificant minus by the 2020s. 4. Kyrgyz Republic. The only country showing sustained positive values of growth over the entire study period. Although some reduction in positive figures has been observed, nevertheless, it maintains relatively high rates of natural increase (approximately +15-18%). 5. Estonian Republic. This country stands out with the strongest volatility among the reviewed states. Except for one year (2010), natural growth remained consistently negative. The significant fall was observed in the mid-1990s and continued through the first decades of the 21st century.

  5. f

    Comparative performance analysis of GFSI and its determinates scores/ranks...

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiuling Guo; Muhammad Islam (2025). Comparative performance analysis of GFSI and its determinates scores/ranks with population growth rate. [Dataset]. http://doi.org/10.1371/journal.pone.0324231.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Xiuling Guo; Muhammad Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparative performance analysis of GFSI and its determinates scores/ranks with population growth rate.

  6. Instagram: countries with the highest audience reach 2024

    • statista.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: countries with the highest audience reach 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, Bahrain was the country with the highest Instagram audience reach with 95.6 percent. Kazakhstan also had a high Instagram audience penetration rate, with 90.8 percent of the population using the social network. In the United Arab Emirates, Turkey, and Brunei, the photo-sharing platform was used by more than 85 percent of each country's population.

  7. n

    SeaTrack datasets

    • data.npolar.no
    Updated May 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strøm, Hallvard (hallvard.strom@npolar.no); Strøm, Hallvard (hallvard.strom@npolar.no) (2019). SeaTrack datasets [Dataset]. http://doi.org/10.21334/npolar.2019.787cd525
    Explore at:
    Dataset updated
    May 7, 2019
    Dataset provided by
    Norwegian Polar Data Centre
    Authors
    Strøm, Hallvard (hallvard.strom@npolar.no); Strøm, Hallvard (hallvard.strom@npolar.no)
    License

    http://spdx.org/licenses/CC0-1.0http://spdx.org/licenses/CC0-1.0

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Dec 31, 2022
    Area covered
    Description

    The countries party to SEATRACK host large and internationally important populations of several seabird species, many of which have experienced negative population trends over recent decades. Many seabird species are spread over vast oceanic areas for most of the year and only aggregate on land during the breeding season. Consequently, little is known about many aspects of their life away from the breeding grounds leaving large gaps in our knowledge and understanding of seabird life-histories.

    Development of small and lightweight instruments, so-called light-logger or GLS (global location sensor) technology has now provided scientists with the means to monitor bird movements throughout the year on a much greater scale than before. The loggers primarily record light levels which, in relation to time of year and day, can be used to calculate twice daily positions of an individual within a radius of approximately 180 km. SEATRACK is utilizing the full potential of light-logger technology with a large-scale coordinated and targeted effort encompassing a representative choice of species, colonies and sample sizes. Such data will help researchers to identify:

    • The most important moulting areas, migration routes and wintering areas for different seabird populations.
    • The size and the composition of seabird populations during the non-breeding season.
    • What environmental threats the different populations face.
    • The origin of birds (i.e. the breeding population) that will be affected in acute incidents such as oil spills, mass mortality due to starvation or drowning in fishing gear.
    • The different environmental conditions characterizing the different habitats occupied by Norwegian seabirds, how these change over time, and how they are reflected in the population dynamics and demography in the colonies
    • Responses to climate change and how this affects the different populations.

    Seabird migration patterns and non-breeding distribution have repeatedly been highlighted, by several social sectors as being some of the most important knowledge gaps, needed to be filled for effective management of seabird populations. SEATRACK intends to provide that information by producing:

    • Distribution maps and population origin maps. Documenting the area use during the non-breeding season, including moulting areas, migration routes and wintering areas for different seabird populations over a three-year period. Estimating the size and the composition/colony origin of populations during the non-breeding season.
    • Research articles about I) variation in migration strategies and the environmental factors underlying this variation, II) migration strategies and seabird demography/population dynamics, III) seabird migration strategies, human activities and marine spatial planning
  8. f

    Data Sheet 1_Spatiotemporal heterogeneity of the association between...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Yang; Rongxin He; Liming Li (2025). Data Sheet 1_Spatiotemporal heterogeneity of the association between socioeconomic development and birth rate: a geographically and temporally weighted regression modeling study in China.xlsx [Dataset]. http://doi.org/10.3389/fpubh.2025.1587358.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    Frontiers
    Authors
    Yu Yang; Rongxin He; Liming Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    BackgroundThe birth rate is an important indicator of the health of the population. However, persistently low birth rate has become a pressing demographic challenge for many countries, including China. This has significant implications for sustainable population planning.MethodsThis study applied hot spot analysis and the spatiotemporal geographically weighted regression (GTWR) modeling, used panel data of 286 cities in China from 2012 to 2021 to explore the spatiotemporal heterogeneity of the relationship between the socioeconomic development and birth rate.ResultsThe research has found that 2017 was an important turning point in China’s demographic transition. The hot spot analysis reveals that the birth rate hot spots are characterized by a multipolar kernel distribution, shifting from spatial diffusion to convergence, with the cold spots mainly located in the northeast. And the GTWR modeling found that the relationship between socioeconomic development and birth rate varies and change dynamically over space and time. Key findings include: (1) the negative impact of GDP per capita on birth rates has intensified; (2) housing prices exhibit both wealth and crowding-out effects on birth rates, and there are obvious regional differences between the north and the south; (3) fiscal education expenditure on birth rates has the most pronounced income effect in the eastern region.ConclusionThis study adopts spatiotemporal perspective to reveal the spatiotemporal heterogeneity of the association between socioeconomic development and birth rate. It provides new evidence on the influence of macro factors on fertility in China. And emphasizes the importance of incorporating regional variations into population policy design.

  9. CENSUS_INS21ES_A_IE_2021_0000

    • inspire-geoportal.ec.europa.eu
    atom, wmts
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Office of Ireland, Central Statistics Office (2021). CENSUS_INS21ES_A_IE_2021_0000 [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/CENSUS_INS21ES_A_IE_2021_0000
    Explore at:
    wmts, atomAvailable download formats
    Dataset updated
    Jan 1, 2021
    Dataset provided by
    Central Statistics Office Irelandhttps://www.cso.ie/en/
    License

    http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a

    Area covered
    Description

    There is a requirement, as per Commission Implementing Regulation (EU) 2018/1799, to deliver Census data for the reference year 2021 to Eurostat. In September 2020, the Irish Government decided to postpone the scheduled April 2021 Census to April 2022 following a recommendation from CSO related to the impact of the Covid-19 pandemic. The CSO however has agreed that the office will still meet its legal requirement. It will base the Eurostat requirements on Census 2022 data, using administrative and other sources to appropriately adjust the data to reference year 2021. A (preliminary) headcount of usual residents at the 1 km2 grid level (there are approximately 73,000 such square kilometres in Ireland) is required by Eurostat by 31st December 2022. The data was produced in the following manner:

    Initial preliminary Census estimate for April 2022 As part of the field operation for the 2022 Census, the CSO introduced a new smartphone-based application that allowed field staff to capture information about every dwelling in the country. This application facilitated the production of a preliminary population publication less than 12 weeks (June 23rd) after census night (April 3rd). The information includes data on the number of de facto occupants. This information is provisional, and the final file will not be completed until all collected paper forms are fully processed, which is expected to be around the end of January 2023. The provisional data should however be a very strong indicator of the final results.

    The preliminary Census de facto population estimate was 5,123,536 persons, available at the 1 km2 grid level. As we need the population on a usual resident basis, it was decided to adjust this estimated de facto population at the 1 km2 grid level by applying the arithmetic differences between the 2016 usual resident and de facto population counts at that level to the de facto population for 2022. A ratio model, where rates of change of de facto to usual resident counts are applied instead of differences, was also considered but this led to more extreme adjustments, mainly where there was a large change in the population count of a cell between 2016 and 2022. This reduced the usual resident population to 5,101,268 for April 2022, a fall of 22,268 persons.

    Temporary Absent Dwellings Census also provided data on the temporarily absent dwellings dataset (at 1 km2 grid level), containing a count of persons usually resident in the State but whose entire household were abroad on census night and therefore not included in the de facto population count. This covers 33,365 temporarily absent dwellings with 50,749 temporarily absent persons across 9,138 grid cells. This category was not present in the 2016 figures so it was decided to include these absent persons as they meet the definition of usual residents and will be present in the final transmission, due March 2024. The resulting usually resident population count for 3rd April 2022 was estimated as 5,152,671 persons.

    Note that in a small number cases (80 grid cells), adjustments resulted in a negative cell value, but these were set to zero.

    Final preliminary estimate

    The CSO then adjusted this figure of estimated usual residents for 3rd April 2022 back to the 3rd December 2021 reference point by performing a reverse cohort-survival model.

    Firstly, there are an estimated 21,528 births, some 12,405 deaths and approximately 63,595 inward and 25,730 outward migrants for the four-month period December 2021 to March 2022. This affects a total of approximately 123,000 persons, or about 2.4% in a total population of around 5.15 million persons. These population changes were ‘reversed’, as indicated below. Secondly, we also ‘reversed’ those persons who moved from their address within Ireland after December 3rd 2021 to their Census April 3rd 2022 address. Based on the selection method approximately 85,000 persons were moved to their previous address, representing about 1.7% of the population.

    The steps in the process were:

    Births We took the actual November 2015 to April 2016 births from Census 2016 with the variables grid reference, gender and NUTS3 as the sampling frame for the selection of births. Then, using data from table 19 in the Q1 2022 Vital Stats quarterly release (Table VSQ19 on Statbank), we derived the number of Q1 2022 births at NUTS3 by gender level. We also included a proportion of Q4 2021 births, taking one-third to represent December 2021. There are 21,528 births in total for the four-month period we are interested in (16,121 for Q1 2022 plus a third of the value of Q4 2021 which is 5,407), see table 2. Then, using the SAS procedure surveyselect, we selected, at random, the required number of births per strata from the frame and totalled up per grid reference. The resulting figure is the number of people removed from the Census 2021 grid totals, as these figures represent those born during December 2021 to March 2022.

    We took the entire Census 2016 data with the variables grid reference, gender, NUTS3 and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of people to add back in who died between December 2020 and March 2022. This stratification results in 96 cells. This frame serves as a proxy for the distribution of deaths across the 1km grid square strata. Next, we obtained the Q4 2021 and Q1 2022 mortality data stratified by gender, NUTS3 and age group, provided by the Vital Stats statistician. The total number is 12,405 deaths for the four-month period of interest (9,535 for Q1 2022 plus one third of the value for Q4 2021 which is 8,626), see tables 3 and 4.

    Then using the SAS procedure surveyselect, we selected, at random, the required number of deaths per strata from the frame and total up per grid reference. The resulting figure is simply the number of people added to the Census 2021 grid figures as summarised at the grid level, as they represent those who died during December 2021 to March 2022.

    Inward and outward migrants

    The processing of the inward and outward migrants essentially follows the same methodology in that we used Census 2016 as a sampling frame for the inclusion of those who emigrated in December 2021 and March 2022 and the exclusion of those who immigrated in the same period.

    We took the Census 2016 with the variables grid reference, gender, NUTS3, broad nationality (Irish, UK, EU14 excl. IE, EU15 to 27 and Rest of the World) and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of migrants. Using the Q4 2021 and Q1 2022 migration data, we got the required inward and outward movers. The Population and Migration statistician provided the data at an individual level for our purposes. There are 63,780 inward migrators (53,403 in Q1 2022 and 10,377 taking one-third of the Q4 2021 values) and 25,730 outward migrators (19,779 in Q1 2022 and 5,951 taking one-third of the Q4 2021 values), see tables 5 to 7.

    Then, using SAS procedure surveyselect, we selected, at random, the required number of inward and outward migrants per strata from the frame and sum over grid reference. Given that there will be more inward than outward migrants, the resulting figures will generally be negative i.e., the population will fall.

    Ukrainian refugees There are no official statistics, but it was estimated that there were more than 23,000 Ukrainian refugees present in the State in April 3 2022. It is difficult to know the exact numbers captured by the Census until the full final dataset is available. Ukrainian refugees were to be counted as immigrants and usual residents (UR) on the census form unless an individual classed themselves as a visitor, in which case they were de facto (DF) residents. From the point of view of the procedure being described here, Ukrainians who are classified

  10. Enterprise survey 2006-2017, Panel data - Argentina

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Enterprise survey 2006-2017, Panel data - Argentina [Dataset]. https://microdata.worldbank.org/index.php/catalog/3396
    Explore at:
    Dataset updated
    Jan 8, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2006 - 2017
    Area covered
    Argentina
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Argentina in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.

    The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2006-2017 Argentina Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)

    Three levels of stratification were used in every country: industry, establishment size, and region.

    Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.

    For the Argentina ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies:

    a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don't know (-9).

    b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from "Don't know" responses.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

  11. f

    RoT for correlation coefficients along with statistical significance.

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiuling Guo; Muhammad Islam (2025). RoT for correlation coefficients along with statistical significance. [Dataset]. http://doi.org/10.1371/journal.pone.0324231.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Xiuling Guo; Muhammad Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    RoT for correlation coefficients along with statistical significance.

  12. f

    Correlations and significance of GFSI & annual population change (APC)...

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiuling Guo; Muhammad Islam (2025). Correlations and significance of GFSI & annual population change (APC) against GFSI components. [Dataset]. http://doi.org/10.1371/journal.pone.0324231.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Xiuling Guo; Muhammad Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Correlations and significance of GFSI & annual population change (APC) against GFSI components.

  13. Enterprise Survey 2006-2010-2017, Panel Data - Paraguay

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2018). Enterprise Survey 2006-2010-2017, Panel Data - Paraguay [Dataset]. https://microdata.worldbank.org/index.php/catalog/2974
    Explore at:
    Dataset updated
    Mar 6, 2018
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2006 - 2017
    Area covered
    Paraguay
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Paraguay in 2006, 2010 and 2017, as part of Latin America and the Caribbean Enterprise Surveys rollout, an initiative of the World Bank. The objective of the study is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through face-to-face interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Paraguay ES 2010 was conducted in June 2010 and April 2011, Paraguay ES 2006 was carried out in March and October 2006. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.

    Data from 1,338 establishments was analyzed: 460 businesses were from 2006 only, 153 - from 2010 only, 246 - from 2017 only, 110 firms were from 2010 and 2017, 180 - from 2006 and 2010, 186 firms were from 2006, 2010 and 2017.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Three levels of stratification were used in this country: industry, establishment size, and region.

    Industry stratification was designed as follows: the universe was stratified into Manufacturing industries (ISIC Rev. 3.1 codes 15- 37), Retail industries (ISIC code 52) and Other Services (ISIC codes 45, 50, 51, 55, 60-64, and 72).

    Size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    In 2010, two sample frames were used. The first was supplied by the World Bank and consists of enterprises interviewed in Paraguay 2006. The World Bank required that attempts should be made to re-interview establishments responding to the Paraguay 2006 survey where they were within the selected geographical locations and met eligibility criteria. That sample is referred to as the Panel.

    The two sample frames were then used for the selection of a sample with the aim of obtaining interviews with 360 establishments with five or more employees.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  14. Climate change impact and mitigation cost data - The economically optimal...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Falko Ueckerdt; Falko Ueckerdt (2020). Climate change impact and mitigation cost data - The economically optimal warming limit of the planet [Dataset]. http://doi.org/10.5281/zenodo.3541809
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Falko Ueckerdt; Falko Ueckerdt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper:

    Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019

    Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de).

    Climate change impact data

    File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv

    Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries.

    File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv

    Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action).

    File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv

    Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action).


    In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019).

    Climate change mitigation cost data

    The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2].

    File 4: REMIND_scenario_results_economic_data.csv

    File 5: REMIND_scenarios_climate_data.csv

    Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature.

    In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios.

    The first dimension specifies the climate policy regime (delayed action, baseline scenarios):

    1xx: climate action from 2010
    5xx: climate action from 2015
    2xx climate action from 2020 (used in this study)
    3xx climate action from 2030
    4x1 weak policy baseline (before Paris agreement)

    The second dimension specifies the technology portfolio and assumptions:

    x1x Full technology portfolio (used in this study)
    x2x noCCS: unavailability of CCS
    x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed
    x4x NucPO: phase out of investments into nuclear energy
    x5x Limited SW: penetration of solar and wind power limited
    x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases)
    x6x noBECCS: unavailability of CCS in combination with bioenergy

    The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.).

    xx1 0$/tCO2 (baseline)
    xx2 10$/tCO2
    xx3 30$/tCO2
    xx4 50$/tCO2
    xx5 100$/tCO2
    xx6 200$/tCO2
    xx7 500$/tCO2
    xx8 40$/tCO2
    xx9 20$/tCO2
    xx0 5$/tCO2

    For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price).

    [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a.

    [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.

  15. Enterprise Survey 2005-2009-2017, Panel Data - Niger

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2018). Enterprise Survey 2005-2009-2017, Panel Data - Niger [Dataset]. https://microdata.worldbank.org/index.php/catalog/3028
    Explore at:
    Dataset updated
    Jun 15, 2018
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2005 - 2017
    Area covered
    Niger
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Niger in 2005, 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.

    Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries. Only registered businesses are surveyed in the Enterprise Survey.

    Data from 151 establishments was analyzed. Stratified random sampling was used to select the surveyed businesses. The data was collected using face-to-face interviews.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Three levels of stratification were used in this country: industry, establishment size, and region.

    Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).

    For the 2009 sample stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. Size stratification was defined following the standardized definition used for the Enterprise Surveys: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. Regional stratification was defined in terms of the geographic regions with the largest commercial presence in the country: Maradi and Niamey were the two areas selected in Niger.

    Two frames were used for Niger. The first one included official lists from the Chamber of commerce, craft and industries of Niger 2008 and the Repertoire of Companies (2008) operating in Niger. The second frame (the panel sample) consisted of enterprises interviewed for the Enterprise Survey in 2005, which were to be re-interviewed where they were in the selected geographical regions and met eligibility criteria. Both database contained the following information: -Name of the firm -Contact details -ISIC code -Number of employees.

    Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 39.9% (134 out of 344 establishments). Breaking down by industry, the following numbers of establishments were surveyed: Manufacturing - 52, Services - 98.

    For 2017: Regional stratification for the Niger ES was done across two regions: Niamey and Rest of the Country.

    The sample frame consisted of listings of firms from three sources: - the list of 150 firms from the Niger 2009 ES for panel firms - firm data from La Caisse Nationale de Sécurité Sociale (CNSS) and a list of exporting firms by the Institut National des Statistiques (INS) for fresh firms (firms not covered in 2009).

    Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 18.6% (76 out of 409 establishments).

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  16. Enterprise Survey 2009-2016, Panel Data - Lesotho

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated May 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2017). Enterprise Survey 2009-2016, Panel Data - Lesotho [Dataset]. https://microdata.worldbank.org/index.php/catalog/2835
    Explore at:
    Dataset updated
    May 11, 2017
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2008 - 2016
    Area covered
    Lesotho
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.

    Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.

    Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Two levels of stratification were used in this country: industry and establishment size.

    Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).

    For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.

    In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.

    In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  17. Enterprise Survey 2012 - China

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Sep 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2013). Enterprise Survey 2012 - China [Dataset]. https://microdata.worldbank.org/index.php/catalog/1559
    Explore at:
    Dataset updated
    Sep 26, 2013
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2011 - 2013
    Area covered
    China
    Description

    Abstract

    This research was carried out in China between December 2011 and February 2013. Data was collected from 2,700 privately-owned and 148 state-owned firms.

    The objective of Enterprise Surveys is to obtain feedback from businesses on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    Usually Enterprise Surveys focus only on private companies, but in China, a special sample of fully state-owned establishments was included as this is an important part of the economy. Data on 148 state-owned enterprises is provided separately from the data of 2,700 private sector firms. To maintain comparability of the China Enterprise Surveys to surveys conducted in other countries, only the dataset of privately sector firms should be used.

    Geographic coverage

    Twenty-five metro areas: Beijing (municipalities), Chengdu City, Dalian City, Dongguan City, Foshan City, Guangzhou City, Hangzhou City, Hefei City, Jinan City, Luoyang City, Nanjing City, Nantong City, Ningbo City, Qingdao City, Shanghai (municipalities), Shenyang City, Shenzhen City, Shijiazhuang City, Suzhou City, Tangshan City, Wenzhou City, Wuhan City, Wuxi City, Yantai City, Zhengzhou City.

    Analysis unit

    The primary sampling unit of the study is an establishment.The establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or universe of the study, is the non-agricultural economy of firms with at least 5 employees and positive amounts of private ownership. The non-agricultural economy comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for China ES was selected using stratified random sampling. Three levels of stratification were used in this country: industry, establishment size, and region.

    Industry stratification was designed in the following way: the universe was stratified into 11 manufacturing industries and 7 services industries as defined in the sampling manual. Each manufacturing industry had a target of 150 interviews. Sample sizes were inflated by about 20% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. Note that 100% government owned firms are categorized independently of their industrial classification. The 148 surveyed state-owned enterprises were categorized as a separate sector group to preserve the representativeness of other sector groupings for the private economy.

    Size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    Regional stratification was defined in twenty-five metro areas: Beijing (municipalities), Chengdu City, Dalian City, Dongguan City, Foshan City, Guangzhou City, Hangzhou City, Hefei City, Jinan City, Luoyang City, Nanjing City, Nantong City, Ningbo City, Qingdao City, Shanghai (municipalities), Shenyang City, Shenzhen City, Shijiazhuang City, Suzhou City, Tangshan City, Wenzhou City, Wuhan City, Wuxi City, Yantai City, Zhengzhou City.

    The sample frame was obtained by SunFaith from SinoTrust.

    The enumerated establishments were then used as the frame for the selection of a sample with the aim of obtaining interviews at 3,000 establishments with five or more employees. The quality of the frame was assessed at the onset of the project through calls to a random subset of firms and local contractor knowledge. The sample frame was not immune from the typical problems found in establishment surveys: positive rates of non-eligibility, repetition, non-existent units, etc.

    Given the impact that non-eligible units included in the sample universe may have on the results, adjustments are needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 31% (6,485 out of 20,616 establishments).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available: - Services Questionnaire, - Manufacturing Questionnaire, - Screener Questionnaire.

    The Services Questionnaire is administered to the establishments in the services sector. The Manufacturing Questionnaire is built upon the Services Questionnaire and adds specific questions relevant to manufacturing.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    The number of contacted establishments per realized interview was 7.24. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 0.55.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as a different option from don’t know. b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  18. Enterprise Survey 2013 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 28, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2015). Enterprise Survey 2013 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/2181
    Explore at:
    Dataset updated
    Apr 28, 2015
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2012 - 2014
    Area covered
    Ghana
    Description

    Abstract

    The survey was conducted in Ghana between December 2012 and July 2014 as part of the Africa Enterprise Survey 2013 roll-out, an initiative of the World Bank. The objective of the survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    Data from 720 establishments was analyzed. Stratified random sampling was used to select the surveyed businesses. The data was collected using face-to-face interviews.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Ghana was selected using stratified random sampling. Three levels of stratification were used in this country: firm sector, firm size, and geographic region.

    Industry stratification was designed in the way that follows: the universe was stratified into four manufacturing industries (food, textiles and garments, chemicals and plastics, other manufacturing) and two service sectors (retail and other services).

    Size stratification was defined following the standardized definition for the Enterprise Surveys: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees).

    Regional stratification for the Ghana ES was defined in four regions: Accra, North (Kumasi and Tamale), Takoradi, and Tema.

    For the Ghana ES, several sample frames were used. The first was supplied by the World Bank and consists of enterprises interviewed in Ghana 2007. The World Bank required that attempts should be made to re-interview establishments responding to the Ghana 2007 survey where they were within the selected geographical regions and met eligibility criteria. Due to the fact that the previous round of surveys seemed to have utilized different stratification criteria (or no stratification at all) and due to the prevalence of small firms and firms located in the capital city in the 2007 sample the following convention was used. The presence of panel firms was limited to a maximum of 50% of the achieved interviews in each cell. That sample is referred to as the Panel.

    The second frame was constructed using different lists acquired from relevant institutions in Ghana. The main lists used were obtained from the Ghana Statistical Service (GSS). These include: 1) The 2012 Firm Registry. The registry lacked information on firm employee size. 2) The list of firms paying VAT. The VAT dataset included a variable on firms; turnover. The VAT dataset and Firm Registry were merged by using the firms' identification number (TIN). VAT information was not available for all firms in the Firm Registry. 3) The list of Large Tax Payers. The Large Tax Payers file also lacked information on firm employee size.

    Since firm size was missing from all lists mentioned above, after having discussed with GSS and with the local contractor the following methods were used to predict firm size. - All firms who were in the Firm Registry but not in the VAT dataset were considered to be micro firms and therefore not use in the current survey. - Firms who were in the Firm Registry and in the VAT dataset were considered to be small firms. - Firms in the Large Tax Payers dataset were considered medium or large firms. The original design was divided into two size groups: small firms and medium and large firms.

    During fieldwork the GSS lists proved to be very inaccurate and not sufficient to reach the target sample design, As such they were complemented with additional lists of firms from the Ghana Chamber of Commerce and Industry and Business Associations. The list from the Ghana Chamber of Commerce lacked information on firm employee size or firm turnover. Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 1.3% (26 out of 1,990 establishments).

    Finally, a block enumeration was also undertaken in order to build an additional list. The block enumeration allowed to physically creating a list of establishments from which to sample from. A total of 41 blocks were enumerated in the four locations included in the project out of the total 804 blocks identified. The enumeration was conducted without major problems in the time planned. The list of enumerated firms contained 958 records eligible for main Enterprise Survey.

    Note: Unlike the standard ES, the universe for the Ghana ES is characterized by the presence of 5 size categories. The category medium&large was added as stratum in order to sample from the GSS large payers list, while the category "unknow size" was included in order to sample the firms in the Chamber of Commerce and Industry list.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve

  19. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  20. Instagram: distribution of global audiences 2024, by gender

    • statista.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: distribution of global audiences 2024, by gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.

                  Instagram’s Global Audience
    
                  As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
                  As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
    
                  Who is winning over the generations?
    
                  Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hamesh Raj (2024). World Bank Population and Migration Dataset [Dataset]. https://www.kaggle.com/datasets/hameshraj/world-bank-population-and-migration-dataset/code
Organization logo

World Bank Population and Migration Dataset

Comprehensive Global Insights: Population and Migration Trends from World Bank

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 21, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Hamesh Raj
License

https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

Description

Overview: This dataset provides population and migration data for five key South Asian countries: Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka, spanning the years 1960 to 2023. The data, sourced from the World Bank API, sheds light on population growth trends and net migration patterns across these nations, offering rich insights into the region's demographic changes over 63 years.

Key Features: - Total Population: Yearly population data for five countries. - Net Migration: The net effect of immigration and emigration for each year. - Time Span: Covers data from 1960 to 2023. - Source: Extracted from the official World Bank API, ensuring credibility and accuracy.

Use Cases: - Explore regional migration trends and their impact on demographics. - Analyze population growth in South Asia. - Compare migration and population patterns among Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka. - Develop predictive models for demographic and migration forecasts.

About the Data: The dataset is publicly available under the World Bank Open Data License. It can be used freely for educational, research, or commercial purposes with appropriate attribution.

Columns: - Country: Name of the country (Pakistan, India, Bangladesh, Afghanistan, and Sri Lanka). - Year: The year of recorded data. - Total Population: Total population of the country for the given year. - Net Migration: Net migration value (immigration minus emigration).

Key Insights (1960–2023) - Pakistan: Steady growth from 45M (1960) to 240M (2023), with varying migration trends influenced by political and economic changes. - India: Rapid increase from 450M (1960) to 1.43B (2023), with consistently low net migration. - Bangladesh: Population rose from 55M (1960) to 170M (2023), showing negative net migration due to significant emigration. - Afghanistan: Marked by volatile migration due to conflict; population increased from 8M (1960) to 41M (2023). - Sri Lanka: Moderate growth from 10M (1960) to 22M (2023), with net migration losses during periods of civil unrest.

Search
Clear search
Close search
Google apps
Main menu