This dataset simply combines publicly available data to characterise a country based on healthcare factors, economy, government and demographics.
All data are given per 100.000 inhabitants where this is appropriate scores are given as absolute values and so are spending and demographics. Each row represents one country. Data that is included covers the following topics:
Healthcare: - Staff including: Nurses and Physicians per 100.000 inhabitants - Infrastructure including: Beds, Chnage of beds between 2018 and 2019 and the change of bed numbers since 2013, Intensive Care Unit (ICU) beds, ventilators and Extra Corporal Membrane Oxygenation (ECMO), machines per 100.000 inhabitants - Total spending on healthcare in US dollars per capita.
Demographics: - The median age for entire population and each gender - The percentage of the population within age brackets - Total population - Population per km2 - Population change between 2018 and 2019
Government The used scores are from the Economist intelligence unit and describe how democratic a country is and how the government works. These can be used to compare countries based on their government type.
All data is publicly available and just has been brought together in one place. The sources are:
These data are meant as metadata to decide which countries are comparable. I am working on healthcare data so the inspiration is to compare health statistics between countries and make an informed decision about how comparable they are. Could be used for any non healthcare related task as well.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The United Nations Energy Statistics Database (UNSTAT) is a comprehensive collection of international energy and demographic statistics prepared by the United Nations Statistics Division. The 2004 version represents the latest in the series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The database contains comprehensive energy statistics for more than 215 countries or areas for production, trade and intermediate and final consumption (end-use) for primary and secondary conventional, non-conventional and new and renewable sources of energy. Mid-year population estimates are included to enable the computation of per capita data. Annual questionnaires sent to national statistical offices serve as the primary source of information. Supplementary data are also compiled from national, regional and international statistical publications. The Statistics Division prepares estimates where official data are incomplete or inconsistent. The database is updated on a continuous basis as new information and revisions are received. This metadata file represents the population statistics during the expressed time. For more information about the country site codes, click this link to the United Nations "Standard country or area codes for statistical use": https://unstats.un.org/unsd/methodology/m49/overview/
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.
African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.
For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.
References:
Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.
Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.
UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.
WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.
https://pacific-data.sprep.org/dataset/data-portal-license-agreements/resource/de2a56f5-a565-481a-8589-406dc40b5588https://pacific-data.sprep.org/dataset/data-portal-license-agreements/resource/de2a56f5-a565-481a-8589-406dc40b5588
A recently published paper, titled “Coastal proximity of populations in 22 Pacific Island Countries and Territories” details the methodology used to undertake the analysis and presents the findings. Purpose * This analysis aims to estimate populations settled in coastal areas in 22 Pacific Island Countries and Territories (PICTS) using the data currently available. In addition to the coastal population estimates, the study compares the results obtained from the use of national population datasets (census) with those derived from the use of global population grids. * Accuracy and reliability from national and global datasets derived results have been evaluated to identify the most suitable options to estimate size and location of coastal populations in the region. A collaborative project between the Pacific Community (SPC), WorldFish and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
As of February 2025, China ranked first among the countries with the most internet users worldwide. The world's most populated country had 1.11 billion internet users, more than triple the third-ranked United States, with just around 322 million internet users. Overall, all BRIC markets had over two billion internet users, accounting for four of the ten countries with more than 100 million internet users. Worldwide internet usage As of October 2024, there were more than five billion internet users worldwide. There are, however, stark differences in user distribution according to region. Eastern Asia is home to 1.34 billion internet users, while African and Middle Eastern regions had lower user figures. Moreover, the urban areas showed a higher percentage of internet access than rural areas. Internet use in China China ranks first in the list of countries with the most internet users. Due to its ongoing and fast-paced economic development and a cultural inclination towards technology, more than a billion of the estimated 1.4 billion population in China are online. As of the third quarter of 2023, around 87 percent of Chinese internet users stated using WeChat, the most popular social network in the country. On average, Chinese internet users spent five hours and 33 minutes online daily.
Brazil and the United States are the two most populous countries in the Americas today. In 1500, the year that Pedro Álvares Cabral made landfall in present-day Brazil and claimed it for the Portuguese crown, it is estimated that there were roughly one million people living in the region. Some estimates for the present-day United States give a population of two million in the year 1500, although estimates vary greatly. By 1820, the population of the U.S. was still roughly double that of Brazil, but rapid growth in the 19th century would see it grow 4.5 times larger by 1890, before the difference shrunk during the 20th century. In 2024, the U.S. has a population over 340 million people, making it the third most populous country in the world, while Brazil has a population of almost 218 million and is the sixth most populous. Looking to the future, population growth is expected to be lower in Brazil than in the U.S. in the coming decades, as Brazil's fertility rates are already lower, and migration rates into the United States will be much higher. Historical development The indigenous peoples of present-day Brazil and the U.S. were highly susceptible to diseases brought from the Old World; combined with mass displacement and violence, their population growth rates were generally low, therefore migration from Europe and the import of enslaved Africans drove population growth in both regions. In absolute numbers, more Europeans migrated to North America than Brazil, whereas more slaves were transported to Brazil than the U.S., but European migration to Brazil increased significantly in the early 1900s. The U.S. also underwent its demographic transition much earlier than in Brazil, therefore its peak period of population growth was almost a century earlier than Brazil. Impact of ethnicity The demographics of these countries are often compared, not only because of their size, location, and historical development, but also due to the role played by ethnicity. In the mid-1800s, these countries had the largest slave societies in the world, but a major difference between the two was the attitude towards interracial procreation. In Brazil, relationships between people of different ethnic groups were more common and less stigmatized than in the U.S., where anti-miscegenation laws prohibited interracial relationships in many states until the 1960s. Racial classification was also more rigid in the U.S., and those of mixed ethnicity were usually classified by their non-white background. In contrast, as Brazil has a higher degree of mixing between those of ethnic African, American, and European heritage, classification is less obvious, and factors such as physical appearance or societal background were often used to determine racial standing. For most of the 20th century, Brazil's government promoted the idea that race was a non-issue and that Brazil was racially harmonious, but most now acknowledge that this actually ignored inequality and hindered progress. Racial inequality has been a prevalent problem in both countries since their founding, and today, whites generally fare better in terms of education, income, political representation, and even life expectancy. Despite this adversity, significant progress has been made in recent decades, as public awareness of inequality has increased, and authorities in both countries have made steps to tackle disparities in areas such as education, housing, and employment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Town And Country by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Town And Country. The dataset can be utilized to understand the population distribution of Town And Country by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Town And Country. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Town And Country.
Key observations
Largest age group (population): Male # 60-64 years (538) | Female # 45-49 years (537). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global) population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment) as well as material welfare losses (tax increases, economic stagnation). In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The refugee location data (Geo-Refugee) provides information on the geographical locations, population sizes and accommodation types of refugees and people in refugee-like situations throughout Africa. Based on the United Nations High Commissioner for Refugees' Location and Demographic Composition data as well as information contained in supplemental UNHCR resources, Geo-Refugee assigns administrative unit names and geographic coordinates to refugee camps/ centers, and locations hosting dispersed (self-settled) refugees. Geo-Refugee was collected for the purpose of investigating the relationship between refugees and armed conflict, but can be used for a number of refugee-related studies. The original data for the category refugees and people in a refugee-like situation by accommodation type and location name comes directly from the UNHCR. The category refugees includes: "individuals recognized under the 1951 Convention relating to the Status of Refugees and its 1967 Protocol; the 1969 OAU Convention Governing the Specific Aspects of Refugee Problems in Africa; those recognized in accordance with the UNHCR statute; individuals granted complementary forms of protection and those enjoying temporary protection.The category people in a refugee-like situation "is descriptive in nature and includes groups of people who are outside their country of origin and who face protection risks similar to those of refugees, but for whom refugee status has, for practical or other reasons, not been ascertained" (UNHCR http://www.unhcr.org/45c06c662.html). The unit of the data is the first-level administrative unit (province, region or state). A refugee location is defined as a unit with a known refugee population, as established by UNHCR country offices. The locations data was compiled using statistics provided by the UNHCR Division of Programme Support and Management. Several of the refugee sites in the original UNHCR data are camp names or other lo cations which are not immediately traceable to a particular location using even the most established geographical databases like that of the National Geospatial Intelligence Agency (NGA). Thus, unit-level location of refugees was established and confirmed using supplementary resources including reports, maps, and policy documents compiled by the UNHCR and contained in the Refworld database (see http://www.unhcr.org/cgi-bin/texis/vtx/refworld/rwmain). Refworld was the primary database used for this project. Geographic coordinates were assigned using the database of the National Geospatial-Intelligence Agency. See https://www1.nga.mil/Pages/default.aspx for more information. All attempts were made to find precise coordinates, including cross-referencing with Google Maps. The current version of the data covers 43 African countries and encompasses the period 2000 to 2010. The UNHCR began systematically collecting information on the locations and demographic compositions of refugee populations in 2000.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Country Life Acres, MO population pyramid, which represents the Country Life Acres population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Life Acres Population by Age. You can refer the same here
Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Country Club Hills, IL population pyramid, which represents the Country Club Hills population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club Hills Population by Age. You can refer the same here
This dataset simply combines publicly available data to characterise a country based on healthcare factors, economy, government and demographics.
All data are given per 100.000 inhabitants where this is appropriate scores are given as absolute values and so are spending and demographics. Each row represents one country. Data that is included covers the following topics:
Healthcare: - Staff including: Nurses and Physicians per 100.000 inhabitants - Infrastructure including: Beds, Chnage of beds between 2018 and 2019 and the change of bed numbers since 2013, Intensive Care Unit (ICU) beds, ventilators and Extra Corporal Membrane Oxygenation (ECMO), machines per 100.000 inhabitants - Total spending on healthcare in US dollars per capita.
Demographics: - The median age for entire population and each gender - The percentage of the population within age brackets - Total population - Population per km2 - Population change between 2018 and 2019
Government The used scores are from the Economist intelligence unit and describe how democratic a country is and how the government works. These can be used to compare countries based on their government type.
All data is publicly available and just has been brought together in one place. The sources are:
These data are meant as metadata to decide which countries are comparable. I am working on healthcare data so the inspiration is to compare health statistics between countries and make an informed decision about how comparable they are. Could be used for any non healthcare related task as well.