Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Immigrants Admitted: All Countries data was reported at 1,127,167.000 Person in 2017. This records a decrease from the previous number of 1,183,505.000 Person for 2016. United States Immigrants Admitted: All Countries data is updated yearly, averaging 451,510.000 Person from Sep 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 1,827,167.000 Person in 1991 and a record low of 23,068.000 Person in 1933. United States Immigrants Admitted: All Countries data remains active status in CEIC and is reported by US Department of Homeland Security. The data is categorized under Global Database’s United States – Table US.G087: Immigration.
List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional d
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 25 series, with data for years 1955 - 2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...) Last permanent residence (25 items: Total immigrants; France; Great Britain; Total Europe ...).
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Historical Migration Statistics brings together migration statistics from 1945 through to the present day.
In interpreting these statistics it should be noted that the classification of regions and country names has changed over time and that the way migration statistics are reported has also changed. From October 1945 to June 1959, migration statistics included permanent and long-term arrivals. Today, we have various components - the Migration Program, Humanitarian Program and Non-Program migration (mainly New Zealand citizens) reported as permanent additions to Australia's resident population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on immigration and emigration including administrative corrections by sex, country of origin and country of birth. The data are available per month and per year.
CBS is moving to a new classification of the population by origin. From now on, it is more decisive where someone was born, in addition to where someone's parents were born. The word "migration background" is no longer used. The main classification Western/non-Western is replaced by a classification based on continents and common immigration countries. This classification is gradually introduced in tables and publications with population by origin.
Data available from: January 2022.
Status of figures: The figures up to 2023 are final. Figures from 2024 onwards are provisional. Interim adjustments from previous months are possible.
Changes as of 28 June 2024: The final figures for 2023 and provisional figures for May 2024 have been added.
Changes as of 17 November 2023: None, this is a new table. This table is the successor of Immi- and emigration; per month, migration background, gender; 1995-2023. See paragraph 3. The following changes have been made to the discontinued table: - The tab ‘Migration background’ has been replaced by ‘Country of origin’; - The countries of origin Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Turkey are allotted to continent Asia (was Europe); - The tab ‘Generation’ has been replaced by ‘Country of birth’.
When will there be new figures? For the time being, only data from 2022 onwards is available in the table. The periods 1996 to 2021 will be added to the table at a later date. At the end of each month, the provisional figures for the previous month shall be published. Interim adjustments from previous months are possible. In the third quarter of each year, the provisional figures for the previous year shall be replaced by final figures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data presented in this data project were collected in the context of two H2020 research projects: ‘Enhanced migration measures from a multidimensional perspective’(HumMingBird) and ‘Crises as opportunities: Towards a level telling field on migration and a new narrative of successful integration’(OPPORTUNITIES). The current survey was fielded to investigate the dynamic interplay between media representations of different migrant groups and the governmental and societal (re)actions to immigration. With these data, we provide more insight into these societal reactions by investigating attitudes rooted in values and worldviews. Through an online survey, we collected quantitative data on attitudes towards: Immigrants, Refugees, Muslims, Hispanics, Venezuelans News Media Consumption Trust in News Media and Societal Institutions Frequency and Valence of Intergroup Contact Realistic and Symbolic Intergroup Threat Right-wing Authoritarianism Social Dominance Orientation Political Efficacy Personality Characteristics Perceived COVID-threat, and Socio-demographic Characteristics For the adult population aged 25 to 65 in seven European countries: Austria Belgium Germany Hungary Italy Spain Sweden And for ages ranged from 18 to 65 for: United States of America Colombia The survey in the United States and Colombia was identical to the one in the European countries, although a few extra questions regarding COVID-19 and some region-specific migrant groups (e.g. Venezuelans) were added. We collected the data in cooperation with Bilendi, a Belgian polling agency, and selected the methodology for its cost-effectiveness in cross-country research. Respondents received an e-mail asking them to participate in a survey without specifying the subject matter, which was essential to avoid priming. Three weeks of fieldwork in May and June of 2021 resulted in a dataset of 13,645 respondents (a little over 1500 per country). Sample weights are included in the dataset and can be applied to ensure that the sample is representative for gender and age in each country. The cooperation rate ranged between 12% and 31%, in line with similar online data collections.
The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.
Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.
Two provinces: Gauteng and Limpopo
Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.
The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.
Sample survey data [ssd]
Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.
In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).
A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.
In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).
How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.
Based on all the above principles the set of weights or scores was developed.
In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.
From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.
Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.
The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.
The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead
Immigration system statistics, year ending March 2023: data tables
This release presents immigration statistics from Home Office administrative sources, covering the period up to the end of March 2023. It includes data on the topics of:
User Guide to Home Office Immigration Statistics
Policy and legislative changes affecting migration to the UK: timeline
Developments in migration statistics
Publishing detailed datasets in Immigration statistics
A range of key input and impact indicators are currently published by the Home Office on the Migration transparency data webpage.
If you have feedback or questions, our email address is MigrationStatsEnquiries@homeoffice.gov.uk.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 32 series, with data for years 1956 - 1976 (not all combinations necessarily have data for all years), and was last released on 2012-02-16. This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (32 items: Outside Canada; Great Britain; France; Europe ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global matrices of bilateral migrant stocks spanning the period 1960-2000, disaggregated by gender and based primarily on the foreign-born concept are presented. Over one thousand census and population register records are combined to construct decennial matrices corresponding to the last five completed census rounds.For the first time, a comprehensive picture of bilateral global migration over the last half of the twentieth century emerges. The data reveal that the global migrant stock increased from 92 to 165 million between 1960 and 2000. South-North migration is the fastest growing component of international migration in both absolute and relative terms. The United States remains the most important migrant destination in the world, home to one fifth of the world™s migrants and the top destination for migrants from no less than sixty sending countries. Migration to Western Europe remains largely from elsewhere in Europe. The oil-rich Persian Gulf countries emerge as important destinations for migrants from the Middle East, North Africa and South and South-East Asia. Finally, although the global migrant stock is still predominantly male, the proportion of women increased noticeably between 1960 and 2000.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
People who have been granted permanent resident status in Canada. Please note that in these datasets, the figures have been suppressed or rounded to prevent the identification of individuals when the datasets are compiled and compared with other publicly available statistics. Values between 0 and 5 are shown as “--“ and all other values are rounded to the nearest multiple of 5. This may result to the sum of the figures not equating to the totals indicated.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The empirical dataset is derived from a survey carried out on 25 estates in 14 cities in nine different European countries: France (Lyon), Germany (Berlin), Hungary (Budapest and Nyiregyha´za), Italy (Milan), the Netherlands (Amsterdam and Utrecht), Poland (Warsaw), Slovenia (Ljubljana and Koper), Spain (Barcelona and Madrid), and Sweden (Jo¨nko¨ping and Stockholm). The survey was part of the EU RESTATE project (Musterd & Van Kempen, 2005). A similar survey was constructed for all 25 estates.
The survey was carried out between February and June 2004. In each case, a random sample was drawn, usually from the whole estate. For some estates, address lists were used as the basis for the sample; in other cases, the researchers first had to take a complete inventory of addresses themselves (for some deviations from this general trend and for an overview of response rates, see Musterd & Van Kempen, 2005). In most cities, survey teams were hired to carry out the survey. They worked under the supervision of the RESTATE partners. Briefings were organised to instruct the survey teams. In some cases (for example, in Amsterdam and Utrecht), interviewers were recruited from specific ethnic groups in order to increase the response rate among, for example, the Turkish and Moroccan residents on the estates. In other cases, family members translated questions during a face-to-face interview. The interviewers with an immigrant background were hired in those estates where this made sense. In some estates it was not necessary to do this because the number of immigrants was (close to) zero (as in most cases in CE Europe).
The questionnaire could be completed by the respondents themselves, but also by the interviewers in a face-to-face interview.
Data and Representativeness
The data file contains 4756 respondents. Nearly all respondents indicated their satisfaction with the dwelling and the estate. Originally, the data file also contained cases from the UK.
However, UK respondents were excluded from the analyses because of doubts about the reliability of the answers to the ethnic minority questions. This left 25 estates in nine countries. In general, older people and original populations are somewhat over-represented, while younger people and immigrant populations are relatively under-represented, despite the fact that in estates with a large minority population surveyors were also employed from minority ethnic groups. For younger people, this discrepancy probably derives from the extent of their activities outside the home, making them more difficult to reach. The under-representation of the immigrant population is presumably related to language and cultural differences. For more detailed information on the representation of population in each case, reference is made to the reports of the researchers in the different countries which can be downloaded from the programme website. All country reports indicate that despite these over- and under-representations, the survey results are valuable for the analyses of their own individual situation.
This dataset is the result of a team effort lead by Professor Ronald van Kempen, Utrecht University with funding from the EU Fifth Framework.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
UK residents by broad country of birth and citizenship groups, broken down by UK country, local authority, unitary authority, metropolitan and London boroughs, and counties. Estimates from the Annual Population Survey.
VITAL SIGNS INDICATOR Migration (EQ4)
FULL MEASURE NAME Migration flows
LAST UPDATED December 2018
DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.
DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.
Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)
One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.
This database automatically includes metadata, the source of which is the GOVERNMENT OF THE REPUBLIC OF SLOVENIA STATISTICAL USE OF THE REPUBLIC OF SLOVENIA and corresponding to the source database entitled “Immigrants aged 15 or more by activity status, nationality, country of previous residence and sex, Slovenia, annually”.
Actual data are available in Px-Axis format (.px). With additional links, you can access the source portal page for viewing and selecting data, as well as the PX-Win program, which can be downloaded free of charge. Both allow you to select data for display, change the format of the printout, and store it in different formats, as well as view and print tables of unlimited size, as well as some basic statistical analyses and graphics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Number of Migrants: All India data was reported at 314,541,350.000 Person in 2001. This records an increase from the previous number of 232,112,973.000 Person for 1991. Census: Number of Migrants: All India data is updated yearly, averaging 273,327,161.500 Person from Mar 1991 (Median) to 2001, with 2 observations. The data reached an all-time high of 314,541,350.000 Person in 2001 and a record low of 232,112,973.000 Person in 1991. Census: Number of Migrants: All India data remains active status in CEIC and is reported by Census of India. The data is categorized under Global Database’s India – Table IN.GAG001: Census of India: Migration: Number of Migrants: by States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Zenodo repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here.
Data is available in both NetCDF (.nc
) and CSV (.csv
) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset
objects, enabling coordinate-based data selection.
Each dataset uses the following coordinate conventions:
The following data files are provided:
T
summed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISOAdditionally, two CSV files are provided for convenience:
imm
: Total immigration flowsemi
: Total emigration flowsnet
: Net migrationimm_pop
: Total immigrant population (non-native-born)emi_pop
: Total emigrant population (living abroad)mig_prev
: Total origin-destination flowsmig_brth
: Total birth-destination flows, where Origin ISO
reflects place of birthEach dataset includes a mean
variable (mean estimate) and a std
variable (standard deviation of the estimate).
An ISO3 conversion table is also provided.
Data on countries of citizenship by immigrant status and period of immigration, by admission category and applicant type, age and gender for the population in private households in Canada, provinces and territories, census metropolitan areas, census agglomerations and parts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is the result of an experiment conducted in nine countries in Latin America and the Caribbean and published as the book "A Better World for Migrants in Latin America and the Caribbean". This project is joint work between the IDB and UNDP. The databases contain data collected for the impact evaluation of an intervention designed to explore which mechanisms are more effective in changing people's beliefs and attitudes toward migrants. The experiment was conducted in nine countries in Latin America and the Caribbean and consisted of two video interventions. The first video, the informative video, aimed to correct misinformation about the impact of migration by providing accurate information about the size of the migrant population and its characteristics. The second video, an emotive video, intended to appeal to the emotions and empathy of the local population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Immigrants Admitted: All Countries data was reported at 1,127,167.000 Person in 2017. This records a decrease from the previous number of 1,183,505.000 Person for 2016. United States Immigrants Admitted: All Countries data is updated yearly, averaging 451,510.000 Person from Sep 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 1,827,167.000 Person in 1991 and a record low of 23,068.000 Person in 1933. United States Immigrants Admitted: All Countries data remains active status in CEIC and is reported by US Department of Homeland Security. The data is categorized under Global Database’s United States – Table US.G087: Immigration.