In order to begin correlating global data based around infection rates, from the WHO data in the UNCOVER: Covid-19 challenge, found here, to quality of healthcare in a region, data relaying the availability of health care in nations around the globe is necessary as a first step to this analysis. Out of a general desire to provide this data to the data science community, and out of a desire to find ways to learn about, prepare for in whatever way possible, and beat, the COVID-19 pandemic of 2020, I'm making this data-set public for others to use, share, and study with.
The data presented in the file below cover the following information... 1 set of Strings --> The country names 1 set of Integers --> The years in which the data were recorded (2010-2014). 6 sets of floats --> 6 columns of floats record the total density of health centers and hospitals (including provincial and specialized) to every 100,000 people within the country... thus generalizing the country's access to health care, and maintenance/creation of the health infrastructure needed to support the population.
Complete thanks for this data-set goes to the World Health Organization and the Global Health Observatory. This data can be found on the GHO's site, specifically here. In terms of the licensing, in order to underscore that this data is not mine, as well as ensure all steps are taken to make one's proper rights clear (and grant thanks for the data once again), the general data usage license agreement for the data-set used can be found here.
It is sadly true that this data on its own is unlikely to present any major answers. When combined with other datasets however, this may yield answers as to what factors of a countries existence may indicate its ability to maintain a large health infrastructure. In fact, determining how a country's finances, natural resource list (as just ideas), etc. relate to a country's ability to sustain a decent health infrastructure would be an extremely interesting question to answer. I hope you may find the data helpful in your endeavors!
Disclaimer: This is my first ever published data-set on Kaggle. While I've done my best to ensure it's fairly descriptive for any potential visitors, please do feel free to leave any comments you may have in the discussions section! I'm always open to finding ways to improve.
From the selected regions, the ranking by number of hospitals is led by China with 37,627 hospitals and is followed by the Nigeria (23,640 hospitals). In contrast, the ranking is trailed by Seychelles with one hospitals, recording a difference of 37,626 hospitals to China. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The current healthcare spending ranking is led by the United States with 5 trillion U.S. dollars, while China is following with 1.1 trillion U.S. dollars. In contrast, Gambia is at the bottom of the ranking with 83.51 million U.S. dollars, showing a difference of 5 trillion U.S. dollars to the United States. According to Worldbank health spending includes expenditures with regards to healthcare services and goods. The spending refers to current spending of both governments and consumers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
This dataset compiles valuable information on how different countries worldwide rank concerning conditions and opportunities for women. It aims to shed light on the status of women's rights and gender equality across the globe, making it a valuable resource for researchers, policymakers, and organizations advocating for gender equality.
This dataset contains three main columns:
1.**Rank:** This column provides the ranking of countries based on their performance or score in terms of conditions and opportunities for women. Rankings range from 1 (indicating the best country for women) to the total number of countries included in the dataset.
2.**Country:** This column lists the names of the countries under evaluation. Each row corresponds to a specific country, allowing users to identify which country the data pertains to. Examples of entries in this column include "United States," "Sweden," "India," and more.
3.**Score:** The "Score" column comprises numerical values or scores reflecting the overall assessment of each country's performance regarding conditions and opportunities for women. These scores are likely calculated based on factors such as gender equality in education, employment, healthcare, political representation, and legal rights. Higher scores generally indicate better conditions for women, while lower scores suggest room for improvement.
Use Cases:
Researchers can analyze this dataset to identify global trends in gender equality, allowing for cross-country comparisons and the identification of areas where countries excel or need improvement.
Policymakers can utilize this data to make informed decisions and track progress in achieving gender equality goals.
Advocacy groups and organizations working on women's rights can leverage this dataset to support their initiatives and promote gender equality on a global scale.
Data enthusiasts on Kaggle can explore this dataset for data visualization, machine learning, and statistical analysis projects aimed at uncovering insights and trends related to women's well-being and opportunities.
Data Source:
https://ceoworld.biz/2021/06/11/the-worlds-best-countries-for-women-2021/
Acknowledgments:
If applicable, acknowledge any individuals or organizations that contributed to collecting or compiling this dataset.
By publishing this dataset on Kaggle, you are contributing to the open data community and providing a valuable resource for data-driven insights into gender equality worldwide.
Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.
Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.
In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.
According to experts, that is the largest exodus of public health leaders in American history.
Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.
The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.
The AP and KHN found that:
To get total numbers of exits by state, broken down by state and local departments, use this query
KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.
The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.
Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.
The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.
Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.
Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.
KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.
Findings and the data should be cited as: "According to a KHN and Associated Press report."
If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.
To protect health from risks derived from climate change, decision-makers (going from national leaders to individual citizens) need access to the best information possible on the risks and the opportunities for action. This report accompanies a set of country profiles on climate change and health. It provides an overview of the global consequences of collectively acting, or failing to act, to address climate change and its associated health risks.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is an augmented version off this one by Eric Sims. I added additional informations about countries and continents from where companies are coming from, so I could plot results on maps.
About the dataset column's : - company : company name which submited the cheese into the competition - product_name : cheese name submited - rating : reward obtained by the cheese - category : category where the cheese belongs to - country : country from where the company is coming from - county : corresponds to UK's different counties when the company is from UK. - cat_code : cheese category code - alpha_3 : country iso3 name - country_code : country code - region : continent from where the company is coming from
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
🚑 Clinical Field Mappings for Healthcare Systems
This synthetic dataset provides a wide variety of alternative names for clinical database fields, mapping them to standardized targets for healthcare data normalization.
Using LLMs, we generated and validated thousands of plausible variations, including misspellings, abbreviations, country-specific nuances, and common real-world typos.
This dataset is perfect for training models that need to standardize, clean, or map heterogeneous healthcare data schemas into unified, normalized formats.
✅ Applications include: - Data cleaning and ETL pipelines for clinical databases - Fine-tuning LLMs for schema matching - Clinical data interoperability projects - Zero-shot field matching research
The dataset is machine-generated and validated with LLM feedback loops to ensure high-quality mappings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundTo promote shared digital health best practices in a global context, as agreed within the Global Digital Health Partnership (GDHP), one of the most important topics to evaluate is the ability to detect what participating countries believe to be priorities suitable to improve their healthcare systems. No previously published scientific papers investigated these aspects as a cross-country comparison.ObjectiveThe aim of this paper is to present results concerning the priorities identification section of the Evidence and Evaluation survey addressed to GDHP members in 2021, comparing countries’ initiatives and perspectives for the future of digital health based on internationally agreed developments.MethodsThis survey followed a cross-sectional study approach. An online survey was addressed to the stakeholders of 29 major countries.ResultsTen out of 29 countries answered the survey. The mean global score of 3.54 out of 5, calculated on the whole data set, demonstrates how the global attention to a digital evolution in health is shared by most of the evaluated countries.ConclusionThe resulting insights on the differences between digital health priority identification among different GDHP countries serves as a starting point to coordinate further progress on digital health worldwide and foster evidence-based collaboration.
The share of the population with overweight in Qatar was forecast to continuously increase between 2024 and 2029 by in total two percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 77.01 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Bahrain and Saudi Arabia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.
Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.
Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings
Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela
Follow data.kapsarc.org for timely data to advance energy economics research.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
https://wemarketresearch.com/privacy-policyhttps://wemarketresearch.com/privacy-policy
Explore North America Artificial Intelligence in Healthcare Market, including size, share, growth, trends, and industry analysis, with forecasts extending to 2033.
Report Attribute | Description |
---|---|
Market Size in 2023 | USD 8.9 Billion |
Market Forecast in 2033 | USD 114.2 Billion |
CAGR % 2024-2033 | 21% |
Base Year | 2023 |
Historic Data | 2016-2022 |
Forecast Period | 2024-2033 |
Report USP | Production, Consumption, company share, company heatmap, company production capacity, growth factors and more |
Segments Covered | By Application, By Service, By Technology, By End User, By Country and By Region |
Growth Drivers | The widespread adoption of electronic health records has generated vast amounts of data. AI can be leveraged to analyze this data efficiently, leading to better patient care, personalized medicine, and improved operational efficiency. AI is being used to accelerate the drug discovery process. Machine learning models can analyze large datasets to identify potential drug candidates, predict their efficacy, and optimize the drug development pipeline. AI-powered tools enable continuous monitoring of patients outside traditional healthcare settings. This can be especially beneficial for managing chronic conditions, providing real-time data to healthcare professionals and improving patient engagement. |
Regional Scope | North America |
Country Scope | U.S, Canada, Mexico |
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/27557https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/27557
The Global Hunger Index (GHI) is a tool designed to comprehensively measure and track hunger globally and by region and country. Calculated each year by the International Food Policy Research Institute (IFPRI), the GHI highlights successes and failures in hunger reduction and provide insights into the drivers of hunger, and food and nutrition security. The 2014 GHI has been calculated for 120 countries for which data on the three component indicators are available and for which measuring hung er is considered most relevant. The GHI calculation excludes some higher income countries because the prevalence of hunger there is very low. The GHI is only as current as the data for its three component indicators. This year's GHI reflects the most recent available country level data for the three component indicators spanning the period 2009 to 2013. Besides the most recent GHI scores, this dataset also contains the GHI scores for four other reference periods- 1990, 1995, 2000, and 2005. A country's GHI score is calculated by averaging the percentage of the population that is undernourished, the percentage of children youn ger than five years old who are underweight, and the percentage of children dying before the age of five. This calculation results in a 100 point scale on which zero is the best score (no hunger) and 100 the worst, although neither of these extremes is reached in practice. The three component indicators used to calculate the GHI scores draw upon data from the following sources: 1. Undernourishment: Updated data from the Food and Agriculture Organization of the United Nations (FAO) were used for the 1990, 1995, 2000, 2005, and 2014GHI scores. Undernourishment data for the 2014 GHI are for 2011-2013. 2. Child underweight: The "child underweight" component indicator of the GHI scores includes the latest additions to the World Health Organization's (WHO) Global Database on Child Growth and Malnutrition, and additional data from the joint data base by the United Nations Children's Fund (UNICEF), WHO and the World Bank; the most recent Demographic and Health Survey (DHS) and Multiple Indicator Cluster Survey reports; and statistical tables from UNICEF. For the 2014 GHI, data on child underweight are for the latest year for which data are available in the period 2009-2014. 3. Child mortality: Updated data from the UN Inter-agency Group for Child Mortality Estimation were used for the 1990, 1995, 2000, and 2005, and 2014 GHI scores. For the 2014 GHI, data on child mortality are for 2012. Resources related to 2014 Global Hunger Index
Want to reach physician preference items (PPIs) list but meeting with continuous spam, return mail or email bounces?
Worry not.
Span Global Services’ 100% permission-based global physician email lists, guarantee a sure zoom in your email open rates and click-through rates. We empower global marketing strategies with our geo-targeted US, UK, Canada, Europe, Australia, and other countries physician-targeting comprehensive email database.
Why our Physicians Email Lists? • We not only provide you the physician’s name and email address but in-depth insightful data filters like specialty, years of experience, license information, country, state; SIC code, mailing address, phone number, hospital affiliation, etc. Hence, you can customize your hyper-targeted physician campaign as per your business requirements. • Span Global Services’ physician data counts are 100% permission-based and have whopping deliverability rates that guarantee your every email campaign, responsive success. • Our A-Z Specialty-wise physician data banks are ethically-sourced from legitimate sources like yellow pages, business card, healthcare websites, magazines and journals, government listings, etc. and are super-affordable. • Span Global Services’ physician’s email list is CAN-SPAM Act compliant and also adheres to 15+ global regulations.
Have a healthcare offer or deal, that a physician may find too good to pass?
Launch your worldwide marketing campaigns with our new data zest, keep the email marketing, direct marketing and telemarketing pouring for a continuous global sales pipeline, that only super-converts.
We are a stickler for data cleanliness. Span Global Services’ ‘Email Appending’ Services seeks to continuously update and upgrade your existent contact data from duplicate, incorrect, outdated and redundant physician contacts to highly-responsive ones. This retention of data quality helps your product message reach top physician decision-makers, boost sales and maximize ROIs, a 100% every time.
With such a lucrative data offer at hand, we strongly recommend you race ahead with our physician email lists or opt-for an existent physician data health check-up. How about a get set go?
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
📄 Dataset Description: This dataset contains global cancer patient data reported from 2015 to 2024, designed to simulate the key factors influencing cancer diagnosis, treatment, and survival. It includes a variety of features that are commonly studied in the medical field, such as age, gender, cancer type, environmental factors, and lifestyle behaviors. The dataset is perfect for:
Exploratory Data Analysis (EDA)
Multiple Linear Regression and other modeling tasks
Feature Selection and Correlation Analysis
Predictive Modeling for cancer severity, treatment cost, and survival prediction
Data Visualization and creating insightful graphs
Key Features: Age: Patient's age (20-90 years)
Gender: Male, Female, or Other
Country/Region: Country or region of the patient
Cancer Type: Various types of cancer (e.g., Breast, Lung, Colon)
Cancer Stage: Stage 0 to Stage IV
Risk Factors: Includes genetic risk, air pollution, alcohol use, smoking, obesity, etc.
Treatment Cost: Estimated cost of cancer treatment (in USD)
Survival Years: Years survived since diagnosis
Severity Score: A composite score representing cancer severity
This dataset provides a broad view of global cancer trends, making it an ideal resource for those learning data science, machine learning, and statistical analysis in healthcare.
The current dataset is a subset of a large data collection based on a purpose-built survey conducted in seven middle-income countries in the Global South: Chile, Colombia, India, Kenya, Nigeria, Tanzania, South Africa and Vietnam. The purpose of the collected variables in the present dataset aims to understanding public preferences as a critical way to any effort to reduce greenhouse gas emissions. There are many studies of public preferences regarding climate change in the Global North. However, survey work in low and middle-income countries is limited. Survey work facilitating cross-country comparisons not using the major omnibus surveys is relatively rare.
We designed the Environment for Development (EfD) Seven-country Global South Climate Survey (the EfD Survey) which collected information on respondents’ knowledge about climate change, the information sources that respondents rely on, and opinions on climate policy. The EfD survey contains a battery of well-known climate knowledge questions and questions concerning the attention to and degree of trust in various sources for climate information. Respondents faced several ranking tasks using a best-worst elicitation format. This approach offers greater robustness to cultural differences in how questions are answered than the Likert-scale questions commonly asked in omnibus surveys. We examine: (a) priorities for spending in thirteen policy areas including climate and COVID-19, (b) how respiratory diseases due to air pollution rank relative to six other health problems, (c) agreement with ten statements characterizing various aspects of climate policies, and (d) prioritization of uses for carbon tax revenue. The company YouGov collected data for the EfD Survey in 2023 from 8400 respondents, 1200 in each country. It supplements an earlier survey wave (administered a year earlier) that focused on COVID-19. Respondents were drawn from YouGov’s online panels. During the COVID-19 pandemic almost all surveys were conducted online. This has advantages and disadvantages. Online survey administration reduces costs and data collection times and allows for experimental designs assigning different survey stimuli. With substantial incentive payments, high response rates within the sampling frame are achievable and such incentivized respondents are hopefully motivated to carefully answer the questions posed. The main disadvantage is that the sampling frame is comprised of the internet-enabled portion of the population in each country (e.g., with computers, mobile phones, and tablets). This sample systematically underrepresents those with lower incomes and living in rural areas. This large segment of the population is, however, of considerable interest in its own right due to its exposure to online media and outsized influence on public opinion.
The data includes respondents’ preferences for climate change mitigation policies and competing policy issues like health. The data also includes questions such as how respondents think revenues from carbon taxes should be used. The outcome provide important information for policymakers to understand, evaluate, and shape national climate policies. It is worth noting that the data from Tanzania is only present in Wave 1 and that the data from Chile is only present in Wave 2.
This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Irani... Visit https://dataone.org/datasets/sha256%3Aaa1b4aae69c3399c96bfbf946da54abd8f7642332d12ccd150c42ad400e9699b for complete metadata about this dataset.
This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post, Mapping 2019-nCoV (https://systems.jhu.edu/research/public-health/ncov/), and included data sources are listed here: https://github.com/CSSEGISandData/COVID-19
How many confirmed COVID-19 cases were there in the US, by state?
This query determines the total number of cases by province in February. A "province_state" can refer to any subset of the US in this particular dataset, including a county or state.
SELECT
province_state,
confirmed AS feb_confirmed_cases,
FROM
bigquery-public-data.covid19_jhu_csse.summary
WHERE
country_region = "US"
AND date = '2020-02-29'
ORDER BY
feb_confirmed_cases desc
Which countries with the highest number of confirmed cases have the most per capita? This query joins the Johns Hopkins dataset with the World Bank's global population data to determine which countries among those with the highest total number of confirmed cases have the most confirmed cases per capita.
with country_pop AS(
SELECT
IF(country = "United States","US",IF(country="Iran, Islamic Rep.","Iran",country)) AS country,
year_2018
FROM
bigquery-public-data.world_bank_global_population.population_by_country
)
SELECT
cases.date AS date,
cases.country_region AS country_region,
SUM(cases.confirmed) AS total_confirmed_cases,
SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000
FROM
bigquery-public-data.covid19_jhu_csse.summary
cases
JOIN
country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%')
WHERE
cases.country_region = "US"
AND country_pop.country = "US"
AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)
GROUP BY
country_region, date
UNION ALL
SELECT
cases.date AS date,
cases.country_region AS country_region,
SUM(cases.confirmed) AS total_confirmed_cases,
SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000
FROM
bigquery-public-data.covid19_jhu_csse.summary
cases
JOIN
country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%')
WHERE
cases.country_region = "France"
AND country_pop.country = "France"
AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)
GROUP BY
country_region, date
UNION ALL
SELECT
cases.date AS date,
cases.country_region AS country_region,
SUM(cases.confirmed) AS total_confirmed_cases,
SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000
FROM
bigquery-public-data.covid19_jhu_csse.summary
cases
JOIN
country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%')
WHERE
cases.country_region = "China"
AND country_pop.country = "China"
AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)
GROUP BY country_region, date
UNION ALL
SELECT
cases.date AS date,
cases.country_region AS country_region,
cases.confirmed AS total_confirmed_cases,
cases.confirmed/country_pop.year_2018 * 100000 AS confirmed_cases_per_100000
FROM
bigquery-public-data.covid19_jhu_csse.summary
cases
JOIN
country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%')
WHERE
cases.country_region IN ("Italy", "Spain", "Germany", "Iran")
AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)
ORDER BY
confirmed_cases_per_100000 desc
JHU CSSE
Daily
In order to begin correlating global data based around infection rates, from the WHO data in the UNCOVER: Covid-19 challenge, found here, to quality of healthcare in a region, data relaying the availability of health care in nations around the globe is necessary as a first step to this analysis. Out of a general desire to provide this data to the data science community, and out of a desire to find ways to learn about, prepare for in whatever way possible, and beat, the COVID-19 pandemic of 2020, I'm making this data-set public for others to use, share, and study with.
The data presented in the file below cover the following information... 1 set of Strings --> The country names 1 set of Integers --> The years in which the data were recorded (2010-2014). 6 sets of floats --> 6 columns of floats record the total density of health centers and hospitals (including provincial and specialized) to every 100,000 people within the country... thus generalizing the country's access to health care, and maintenance/creation of the health infrastructure needed to support the population.
Complete thanks for this data-set goes to the World Health Organization and the Global Health Observatory. This data can be found on the GHO's site, specifically here. In terms of the licensing, in order to underscore that this data is not mine, as well as ensure all steps are taken to make one's proper rights clear (and grant thanks for the data once again), the general data usage license agreement for the data-set used can be found here.
It is sadly true that this data on its own is unlikely to present any major answers. When combined with other datasets however, this may yield answers as to what factors of a countries existence may indicate its ability to maintain a large health infrastructure. In fact, determining how a country's finances, natural resource list (as just ideas), etc. relate to a country's ability to sustain a decent health infrastructure would be an extremely interesting question to answer. I hope you may find the data helpful in your endeavors!
Disclaimer: This is my first ever published data-set on Kaggle. While I've done my best to ensure it's fairly descriptive for any potential visitors, please do feel free to leave any comments you may have in the discussions section! I'm always open to finding ways to improve.