Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive statistics on COVID-19 for countries around the world. It includes data on the number of active cases, critical cases, total deaths, and total tests conducted. The dataset is updated frequently to ensure the most current information is available.
Key Features:
Global Coverage: Data for countries across all continents, including Asia, Africa, Europe, North America, South America, and Oceania. Detailed Statistics: Includes metrics such as active cases, critical cases, total deaths, and total tests. Population Data: Provides population figures for each country to contextualize the COVID-19 statistics. Frequent Updates: The dataset is updated regularly to reflect the latest information.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterThis dataset was created by Rabbani Mozahid
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data is in CSV format and includes all historical data on the pandemic up to 03/01/2023, following a 1-line format per country and date.
In the pre-processing of these data, missing data were checked. It was observed, for example, that the missing data referring to new_cases was where the total number of cases had not been changed and that most of the missing data related to vaccination, which actually at the beginning of the pandemic there was no data. Therefore, to solve these cases of missing data it was decided to replace the data containing “NaN” by zero. Some of these features were combined to generate new features. This process that creates new features (data) from existing data, aiming to improve the data before applying machine learning algorithms, is called feature engineering. The new features created were: - Vaccination rate (vaccination_ratio'): total number of people who received at least one dose of vaccine divided by the population at risk. This dose number was chosen because it has a higher correlation with new deaths. - Prevalence: existing cases of the disease at a given time divided by the population at risk of having the disease. Formula: COVID-19 cases ÷ Population at risk * 100. Example: 168,331 ÷ 210,000,000 * 100 = 0.08. - Incidence: new cases of the disease in a defined population during a specific period (one day, for example) divided by the population at risk. Formula: New COVID-19 cases in one day ÷ Population - Total cases * 100. Example: 5,632 ÷ 209,837,301 * 100 = 0.0026.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.
*This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
"N+": the age is not specified but greater than N
“No Trace”: some data was not found
“Unspecified”: not available from the authority
“N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.
If you reuse or enrich this dataset, please share it with us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: This study examined cumulative excess mortality in European countries in the year of the Covid-19 pandemic and characterized the dynamics of the pandemic in different countries, focusing on Hungary and the Central and Eastern European region.Methods: Age-standardized cumulative excess mortality was calculated based on weekly mortality data from the EUROSTAT database, and was compared between 2020 and the 2016–2019 reference period in European countries.Results: Cumulate weekly excess mortality in Hungary was in the negative range until week 44. By week 52, it reached 9,998 excess deaths, corresponding to 7.73% cumulative excess mortality vs. 2016–2019 (p-value = 0.030 vs. 2016–2019). In Q1, only Spain and Italy reported excess mortality compared to the reference period. Significant increases in excess mortality were detected between weeks 13 and 26 in Spain, United Kingdom, Belgium, Netherland and Sweden. Romania and Portugal showed the largest increases in age-standardized cumulative excess mortality in the Q3. The majority of Central and Eastern European countries experienced an outstandingly high impact of the pandemic in Q4 in terms of excess deaths. Hungary ranked 11th in cumulative excess mortality based on the latest available data of from the EUROSTAT database.Conclusion: Hungary experienced a mortality deficit in the first half of 2020 compared to previous years, which was followed by an increase in mortality during the second wave of the COVID-19 pandemic, reaching 7.7% cumulative excess mortality by the end of 2020. The excess was lower than in neighboring countries with similar dynamics of the pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitter2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data exploration, cleaning, and arrangement with Covid Death and Covid Vaccination which is involved:
Data that going to be using
Shows the likelihood of dying if you contract covid in your country
Show what percentage of the population got Covid
Looking at Countries with the Highest Infection Rate compared to the Population
Showing the Country with the Highest Death Count per Population
Break things down by continent
Continents with the Highest death count per population
Looking at Total Population vs Vaccinations
Used CTE and Temp Table
Creating View to store data for later visualizations
Facebook
TwitterThis dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.
The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.
This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting
The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.
Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Mortality statistics due to COVID-19 worldwide are compared, by adjusting for the size of the population and the stage of the pandemic. Data from the European Centre for Disease Control and Prevention, and Our World in Data websites were used. Analyses are based on number of deaths per one million inhabitants. In order to account for the stage of the pandemic, the baseline date was defined as the day in which the 10th death was reported. The analyses included 78 countries and territories which reported 10 or more deaths by April 9. On day 10, India had 0.06 deaths per million, Belgium had 30.46 and San Marino 618.78. On day 20, India had 0.27 deaths per million, China had 0.71 and Spain 139.62. On day 30, four Asian countries had the lowest mortality figures, whereas eight European countries had the highest ones. In Italy and Spain, mortality on day 40 was greater than 250 per million, whereas in China and South Korea, mortality was below 4 per million. Mortality on day 10 was moderately correlated with life expectancy, but not with population density. Asian countries presented much lower mortality figures as compared to European ones. Life expectancy was found to be correlated with mortality.
Facebook
TwitterThis repository contains spatiotemporal data from many official sources for 2019-Novel Coronavirus beginning 2019 in Hubei, China ("nCoV_2019")
You may not use this data for commercial purposes. If there is a need for commercial use of the data, please contact Metabiota at info@metabiota.com to obtain a commercial use license.
The incidence data are in a CSV file format. One row in an incidence file contains a piece of epidemiological data extracted from the specified source.
The file contains data from multiple sources at multiple spatial resolutions in cumulative and non-cumulative formats by confirmation status. To select a single time series of case or death data, filter the incidence dataset by source, spatial resolution, location, confirmation status, and cumulative flag.
Data are collected, structured, and validated by Metabiota’s digital surveillance experts. The data structuring process is designed to produce the most reliable estimates of reported cases and deaths over space and time. The data are cleaned and provided in a uniform format such that information can be compared across multiple sources. Data are collected at the time of publication in the highest geographic and temporal resolutions available in the original report.
This repository is intended to provide a single access point for data from a wide range of data sources. Data will be updated periodically with the latest epidemiological data. Metabiota maintains a database of epidemiological information for over two thousand high-priority infectious disease events. Please contact us (info@metabiota.com) if you are interested in licensing the complete dataset.
Reporting sources provide either cumulative incidence, non-cumulative incidence, or both. If the source only provides a non-cumulative incidence value, the cumulative values are inferred using prior reports from the same source. Use the CUMULATIVE FLAG variable to subset the data to cumulative (TRUE) or non-cumulative (FALSE) values.
The incidence datasets include the confirmation status of cases and deaths when this information is provided by the reporting source. Subset the data by the CONFIRMATION_STATUS variable to either TOTAL, CONFIRMED, SUSPECTED, or PROBABLE to obtain the data of your choice.
Total incidence values include confirmed, suspected, and probable incidence values. If a source only provides suspected, probable, or confirmed incidence, the total incidence is inferred to be the sum of the provided values. If the report does not specify confirmation status, the value is included in the "total" confirmation status value.
The data provided under the "Metabiota Composite Source" often does not include suspected incidence due to inconsistencies in reporting cases and deaths with this confirmation status.
The incidence datasets include cases and deaths. Subset the data to either CASE or DEATH using the OUTCOME variable. It should be noted that deaths are included in case counts.
Data are provided at multiple spatial resolutions. Data should be subset to a single spatial resolution of interest using the SPATIAL_RESOLUTION variable.
Information is included at the finest spatial resolution provided to the original epidemic report. We also aggregate incidence to coarser geographic resolutions. For example, if a source only provides data at the province-level, then province-level data are included in the dataset as well as country-level totals. Users should avoid summing all cases or deaths in a given country for a given date without specifying the SPATIAL_RESOLUTION value. For example, subset the data to SPATIAL_RESOLUTION equal to “AL0” in order to view only the aggregated country level data.
There are differences in administrative division naming practices by country. Administrative levels in this dataset are defined using the Google Geolocation API (https://developers.google.com/maps/documentation/geolocation/). For example, the data for the 2019-nCoV from one source provides information for the city of Beijing, which Google Geolocations indicates is a “locality.” Beijing is also the name of the municipality where the city Beijing is located. Thus, the 2019-nCoV dataset includes rows of data for both the city Beijing, as well as the municipality of the same name. If additional cities in the Beijing municipality reported data, those data would be aggregated with the city Beijing data to form the municipality Beijing data.
Data sources in this repository were selected to provide comprehensive spatiotemporal data for each outbreak. Data from a specific source can be selected using the SOURCE variable.
In addition to the original reporting sources, Metabiota compiles multiple sources to generate the most comprehensive view of an outbreak. This compilation is stored in the database under the source name “Metabiota Composite Source.” The purpose of generating this new view of the outbreak is to provide the most accurate and precise spatiotemporal data for the outbreak. At this time, Metabiota does not incorporate unofficial - including media - sources into the “Metabiota Composite Source” dataset.
Data are collected by a team of digital surveillance experts and undergo many quality assurance tests. After data are collected, they are independently verified by at least one additional analyst. The data also pass an automated validation program to ensure data consistency and integrity.
Creative Commons License Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
This is a human-readable summary of the Legal Code.
You are free:
to Share — to copy, distribute and transmit the work to Remix — to adapt the work
Under the following conditions:
Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
Noncommercial — You may not use this work for commercial purposes.
Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.
With the understanding that:
Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.
Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
Other Rights — In no way are any of the following rights affected by the license: Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; The author's moral rights; Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.
For details and the full license text, see http://creativecommons.org/licenses/by-nc-sa/3.0/
Metabiota shall in no event be liable for any decision taken by the user based on the data made available. Under no circumstances, shall Metabiota be liable for any damages (whatsoever) arising out of the use or inability to use the database. The entire risk arising out of the use of the database remains with the user.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
During the first two year of the Covid-19 pandemic, deaths tolls differed from a country to another. In a previous research work on 39 countries, we have found that some population’s characteristics were either negatively (birth rate/mortality rate, fertility rate) or positively (cancer score, Alzheimer disease score, percent of people above 65 years old, levels of alcohol intake) correlated with Covid-19 mortality. We also found that low levels of climate factors (average annual temperature, average hours of sunshine, average annual level of UV index) were positively correlated with Covid-19 deaths numbers as well. In the present study, we have developped an anti-Covid Capacity index that takes into account all the above mentioned parameters. The polynomial analysis of the anti-Covid Capacity and its corresponding geographic latitude of each country has generated a bell-shaped curve, with a high coefficient of determination (R2= 0.78). Lower anti-Covid capacity values were recorded in countries of low and high latitudes, respectively. Instead, plotting covid-19 deaths numbers against geographic latitude levels has generated an inverted bell-shaped curve, with higher deaths numbers at low and high latitudes, respectively. The analysis by a simple linear regression has shown that Covid-19 deaths numbers were significantly (p= 2,40 x 10-9) and negatively correlated to the anti-Covid Capacity index values. Our data demonstrate that the negative prepandemic human conditions, and the low scores of both annual temperature and UV index in many countries were the key factors behind high Covid-19 mortality, and they can be expressed as a simple index of anti-Covid capacity of a country that can predict the death-associated severity of Covid-19 disease, and thus, according to a country’s geographic latitude.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monthly excess mortality indicator is based on the exceptional data collection on weekly deaths that Eurostat and the National Statistical Institutes set up, in April 2020, in order to support the policy and research efforts related to the COVID-19 pandemic. With that data collection, Eurostat's target was to provide quickly statistics assessing the changing situation of the total number of deaths on a weekly basis, from early 2020 onwards.
The National Statistical Institutes transmit available data on total weekly deaths, classified by sex, 5-year age groups and NUTS3 regions (NUTS2021) over the last 20 years, on a voluntary basis. The resulting online tables, and complementary metadata, are available in the folder Weekly deaths - special data collection (demomwk).
Starting in 2025, the weekly deaths data collected on a quarterly basis. The database updated on the 16th of June 2025 (1st quarter), on the 16 th of September 2025 (2nd quarter), and next update will be in mid-December 2025 (3rd quarter), and mid-February 2026 (4th quarter).
In December 2020, Eurostat released the European Recovery Statistical Dashboard containing also indicators tracking economic and social developments, including health. In this context, “excess mortality” offers elements for monitoring and further analysing direct and indirect effects of the COVID-19 pandemic.
The monthly excess mortality indicator draws attention to the magnitude of the crisis by providing a comprehensive comparison of additional deaths amongst the European countries and allowing for further analysis of its causes. The number of deaths from all causes is compared with the expected number of deaths during a certain period in the past (baseline period, 2016-2019).
The reasons that excess mortality may vary according to different phenomena are that the indicator is comparing the total number of deaths from all causes with the expected number of deaths during a certain period in the past (baseline). While a substantial increase largely coincides with a COVID-19 outbreak in each country, the indicator does not make a distinction between causes of death. Similarly, it does not take into account changes over time and differences between countries in terms of the size and age/sex structure of the population Statistics on excess deaths provide information about the burden of mortality potentially related to the COVID-19 pandemic, thereby covering not only deaths that are directly attributed to the virus but also those indirectly related to or even due to another reason. For example, In July 2022, several countries recorded unusually high numbers of excess deaths compared to the same month of 2020 and 2021, a situation probably connected not only to COVID-19 but also to the heatwaves that affected parts of Europe during the reference period.
In addition to confirmed deaths, excess mortality captures COVID-19 deaths that were not correctly diagnosed and reported, as well as deaths from other causes that may be attributed to the overall crisis. It also accounts for the partial absence of deaths from other causes like accidents that did not occur due, for example, to the limitations in commuting or travel during the lockdown periods.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
TwitterThe complexity of COVID-19 and variations in control measures and containment efforts in different countries have caused difficulties in the prediction and modeling of the COVID-19 pandemic. We attempted to predict the scale of the latter half of the pandemic based on real data using the ratio between the early and latter halves from countries where the pandemic is largely over. We collected daily pandemic data from China, South Korea, and Switzerland and subtracted the ratio of pandemic days before and after the disease apex day of COVID-19. We obtained the ratio of pandemic data and created multiple regression models for the relationship between before and after the apex day. We then tested our models using data from the first wave of the disease from 14 countries in Europe and the US. We then tested the models using data from these countries from the entire pandemic up to March 30, 2021. Results indicate that the actual number of cases from these countries during the first wave mostly fall in the predicted ranges of liniar regression, excepting Spain and Russia. Similarly, the actual deaths in these countries mostly fall into the range of predicted data. Using the accumulated data up to the day of apex and total accumulated data up to March 30, 2021, the data of case numbers in these countries are falling into the range of predicted data, except for data from Brazil. The actual number of deaths in all the countries are at or below the predicted data. In conclusion, a linear regression model built with real data from countries or regions from early pandemics can predict pandemic scales of the countries where the pandemics occur late. Such a prediction with a high degree of accuracy provides valuable information for governments and the public.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.