Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
One in every 100 children dies before completing one year of life. Around 68 percent of infant mortality is attributed to deaths of children before completing 1 month. 15,000 children die every day – Child mortality is an everyday tragedy of enormous scale that rarely makes the headlines Child mortality rates have declined in all world regions, but the world is not on track to reach the Sustainable Development Goal for child mortality Before the Modern Revolution child mortality was very high in all societies that we have knowledge of – a quarter of all children died in the first year of life, almost half died before reaching the end of puberty Over the last two centuries all countries in the world have made very rapid progress against child mortality. From 1800 to 1950 global mortality has halved from around 43% to 22.5%. Since 1950 the mortality rate has declined five-fold to 4.5% in 2015. All countries in the world have benefitted from this progress In the past it was very common for parents to see children die, because both, child mortality rates and fertility rates were very high. In Europe in the mid 18th century parents lost on average between 3 and 4 of their children Based on this overview we are asking where the world is today – where are children dying and what are they dying from?
5.4 million children died in 2017 – Where did these children die? Pneumonia is the most common cause of death, preterm births and neonatal disorders is second, and diarrheal diseases are third – What are children today dying from? This is the basis for answering the question what can we do to make further progress against child mortality? We will extend this entry over the course of 2020.
@article{owidchildmortality, author = {Max Roser, Hannah Ritchie and Bernadeta Dadonaite}, title = {Child and Infant Mortality}, journal = {Our World in Data}, year = {2013}, note = {https://ourworldindata.org/child-mortality} }
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: This study examined cumulative excess mortality in European countries in the year of the Covid-19 pandemic and characterized the dynamics of the pandemic in different countries, focusing on Hungary and the Central and Eastern European region.Methods: Age-standardized cumulative excess mortality was calculated based on weekly mortality data from the EUROSTAT database, and was compared between 2020 and the 2016–2019 reference period in European countries.Results: Cumulate weekly excess mortality in Hungary was in the negative range until week 44. By week 52, it reached 9,998 excess deaths, corresponding to 7.73% cumulative excess mortality vs. 2016–2019 (p-value = 0.030 vs. 2016–2019). In Q1, only Spain and Italy reported excess mortality compared to the reference period. Significant increases in excess mortality were detected between weeks 13 and 26 in Spain, United Kingdom, Belgium, Netherland and Sweden. Romania and Portugal showed the largest increases in age-standardized cumulative excess mortality in the Q3. The majority of Central and Eastern European countries experienced an outstandingly high impact of the pandemic in Q4 in terms of excess deaths. Hungary ranked 11th in cumulative excess mortality based on the latest available data of from the EUROSTAT database.Conclusion: Hungary experienced a mortality deficit in the first half of 2020 compared to previous years, which was followed by an increase in mortality during the second wave of the COVID-19 pandemic, reaching 7.7% cumulative excess mortality by the end of 2020. The excess was lower than in neighboring countries with similar dynamics of the pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThis statistic depicts the mean tuberculosis death rates in high-burden countries worldwide in 2019, per 100,000 population. The Central African Republic led the ranking that year with a mean mortality rate of about ** per 100,000 population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.
*This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
"N+": the age is not specified but greater than N
“No Trace”: some data was not found
“Unspecified”: not available from the authority
“N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.
Facebook
TwitterThis dataset gives the average annual number of deaths during a year per 1,000 population at midyear; also known as crude death rate. This information was found at the CIA's World Factbook 2007. The site had this to say about death rate, "The death rate, while only a rough indicator of the mortality situation in a country, accurately indicates the current mortality impact on population growth. This indicator is significantly affected by age distribution, and most countries will eventually show a rise in the overall death rate, in spite of continued decline in mortality at all ages, as declining fertility results in an aging population." Source: https://www.cia.gov/library/publications/the-world-factbook/docs/notesanddefs.html#2010 Accessed: 9.17.07
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monthly excess mortality indicator is based on the exceptional data collection on weekly deaths that Eurostat and the National Statistical Institutes set up, in April 2020, in order to support the policy and research efforts related to the COVID-19 pandemic. With that data collection, Eurostat's target was to provide quickly statistics assessing the changing situation of the total number of deaths on a weekly basis, from early 2020 onwards.
The National Statistical Institutes transmit available data on total weekly deaths, classified by sex, 5-year age groups and NUTS3 regions (NUTS2021) over the last 20 years, on a voluntary basis. The resulting online tables, and complementary metadata, are available in the folder Weekly deaths - special data collection (demomwk).
Starting in 2025, the weekly deaths data collected on a quarterly basis. The database updated on the 16th of June 2025 (1st quarter), on the 16 th of September 2025 (2nd quarter), and next update will be in mid-December 2025 (3rd quarter), and mid-February 2026 (4th quarter).
In December 2020, Eurostat released the European Recovery Statistical Dashboard containing also indicators tracking economic and social developments, including health. In this context, “excess mortality” offers elements for monitoring and further analysing direct and indirect effects of the COVID-19 pandemic.
The monthly excess mortality indicator draws attention to the magnitude of the crisis by providing a comprehensive comparison of additional deaths amongst the European countries and allowing for further analysis of its causes. The number of deaths from all causes is compared with the expected number of deaths during a certain period in the past (baseline period, 2016-2019).
The reasons that excess mortality may vary according to different phenomena are that the indicator is comparing the total number of deaths from all causes with the expected number of deaths during a certain period in the past (baseline). While a substantial increase largely coincides with a COVID-19 outbreak in each country, the indicator does not make a distinction between causes of death. Similarly, it does not take into account changes over time and differences between countries in terms of the size and age/sex structure of the population Statistics on excess deaths provide information about the burden of mortality potentially related to the COVID-19 pandemic, thereby covering not only deaths that are directly attributed to the virus but also those indirectly related to or even due to another reason. For example, In July 2022, several countries recorded unusually high numbers of excess deaths compared to the same month of 2020 and 2021, a situation probably connected not only to COVID-19 but also to the heatwaves that affected parts of Europe during the reference period.
In addition to confirmed deaths, excess mortality captures COVID-19 deaths that were not correctly diagnosed and reported, as well as deaths from other causes that may be attributed to the overall crisis. It also accounts for the partial absence of deaths from other causes like accidents that did not occur due, for example, to the limitations in commuting or travel during the lockdown periods.
Facebook
TwitterA database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Our previous study analyzed the age trajectory of mortality (ATM) in 14 European countries, while this study aimed at investigating ATM in other continents and in countries with a higher level of mortality. Data from 11 Non-European countries were used.Methods: The number of deaths was extracted from the WHO mortality database. The Halley method was used to calculate the mortality rates in all possible calendar years and all countries combined. This method enables us to combine more countries and more calendar years in one hypothetical population.Results: The age trajectory of total mortality (ATTM) and also ATM due to specific groups of diseases were very similar in the 11 non-European countries and in the 14 European countries. The level of mortality did not affect the main results found in European countries. The inverse proportion was valid for ATTM in non-European countries with two exceptions.Slower or no mortality decrease with age was detected in the first year of life, while the inverse proportion model was valid for the age range (1, 10) years in most of the main chapters of ICD10.Conclusions: The decrease in child mortality with age may be explained as the result of the depletion of individuals with congenital impairment. The majority of deaths up to the age of 10 years were related to congenital impairments, and the decrease in child mortality rate with age was a demonstration of population heterogeneity. The congenital impairments were latent and may cause death even if no congenital impairment was detected.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Uganda UG: Mortality Rate: Infant: per 1000 Live Births data was reported at 37.700 Ratio in 2016. This records a decrease from the previous number of 39.200 Ratio for 2015. Uganda UG: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 107.900 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 132.300 Ratio in 1960 and a record low of 37.700 Ratio in 2016. Uganda UG: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Uganda – Table UG.World Bank: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted Average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mali ML: Mortality Rate: Infant: per 1000 Live Births data was reported at 68.000 Ratio in 2016. This records a decrease from the previous number of 69.600 Ratio for 2015. Mali ML: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 131.200 Ratio from Dec 1963 (Median) to 2016, with 54 observations. The data reached an all-time high of 213.400 Ratio in 1963 and a record low of 68.000 Ratio in 2016. Mali ML: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mali – Table ML.World Bank: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted Average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Facebook
TwitterDataset title: Deaths from all causes in Western Europe by month, 1914-1918 Related publication: More, A. F. et al. (2020). The impact of a six-year climate anomaly on the ‘Spanish Flu’ Pandemic and WWI. GeoHealth, American Geophysical Union. Figures 2 and 3. Dataset source: Bunle, H. (1954). Le Mouvement naturel de la population dans le monde de 1906 à 1936. Paris, Institut national d’études démographiques, pp. 432-438. N.B. Please cite the original source if you use this dataset. N.B. Please note that Bunle did not publish mortality statistics for Belgium, Bulgaria, and several other countries for the period 1914-20 due to his inability to find reliable sources, as indicated in his footnotes and on p. 12. This dataset includes countries of western Europe with the most reliable data. Units: Thousands of deaths. Each monthly figure should be multiplied by 1000 to obtain the total deaths for a specific month. Each year is divided in 12 monthly entries, with decimals increasing by 0.083 (1/12) for each month.
Facebook
TwitterThis dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.
The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.
This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting
The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.
Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains data and analysis from the article Do State Department Travel Warnings Reflect Real Danger?
BTSOriginUS_10_09_to_06_16.csv Air Carrier Statistics Database export, Bureau of Transportation StatisticsSDamerican_deaths_abroad_10_09_to_06_16.csv U.S. State DepartmentSDwarnings_10_09to06_16.csv U.S. State Department via Internet Archivehttps://cdn-images-1.medium.com/max/800/1*moPQYbzXW0Jx6AFhY8VKWQ.png" alt="alt text">
https://cdn-images-1.medium.com/max/800/1*s1OX6ke8wlHhK4VubpVWcg.png" alt="alt text">
https://cdn-images-1.medium.com/max/800/1*JwvpqE4YIuYfx2UEqCp9nA.png" alt="alt text">
https://cdn-images-1.medium.com/max/800/1*LHLsJ0IzLsSlNl0UN8XrAw.png" alt="alt text">
https://cdn-images-1.medium.com/max/800/1*l0sqn7voWyMCbwoQ2OKGfg.png" alt="alt text">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Lifetime risk of maternal death (1 in: rate varies by country) and country Palau. Indicator Definition:Life time risk of maternal death is the probability that a 15-year-old female will die eventually from a maternal cause assuming that current levels of fertility and mortality (including maternal mortality) do not change in the future, taking into account competing causes of death.The indicator "Lifetime risk of maternal death (1 in: rate varies by country)" stands at 753.00 as of 12/31/2023, the highest value since 12/31/2020. Regarding the One-Year-Change of the series, the current value constitutes an increase of 36.91 percent compared to the value the year prior.The 1 year change in percent is 36.91.The 3 year change in percent is 37.91.The 5 year change in percent is -3.21.The 10 year change in percent is 7.11.The Serie's long term average value is 539.36. It's latest available value, on 12/31/2023, is 39.61 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/1994, to it's latest available value, on 12/31/2023, is +133.85%.The Serie's change in percent from it's maximum value, on 12/31/2015, to it's latest available value, on 12/31/2023, is -6.34%.
Facebook
TwitterEnclosed are data from CIESIN's Global subnational infant mortality rates database. Further documentation for these data is available in the enclosed catalog and on the CIESIN Poverty Mapping web site at: http://www.ciesin.columbia.edu/povmap Center for International Earth Science Information Network (CIESIN), Columbia University; 2005 Global subnational infant mortality rates [dataset]. CIESIN, Palisades, NY, USA. Available at: http://www.ciesin.columbia.edu/povmap/ds_global.html
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thailand TH: Death Rate: Crude: per 1000 People data was reported at 7.872 Ratio in 2016. This records an increase from the previous number of 7.750 Ratio for 2015. Thailand TH: Death Rate: Crude: per 1000 People data is updated yearly, averaging 7.229 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 13.180 Ratio in 1960 and a record low of 5.663 Ratio in 1989. Thailand TH: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Thailand – Table TH.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.