100+ datasets found
  1. Life Expectancy 2000 to 2015 all nations.

    • kaggle.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    faisal.1001 (2025). Life Expectancy 2000 to 2015 all nations. [Dataset]. https://www.kaggle.com/datasets/faisal1001/life-expectancy-2000-to-2015-all-nations
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Kaggle
    Authors
    faisal.1001
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    File Description: "Life Expectancy Data.csv" This dataset contains 2,938 entries and 22 columns, covering life expectancy and related health indicators for multiple nations from 2000 to 2015. It includes country-wise data and other economic, social, and health metrics. Column Description: 1. Country – Name of the country. 2. Year – Data year (ranging from 2000 to 2015). 3. Status – Economic classification (Developing/Developed). 4. Life expectancy – Average lifespan in years. 5. Adult Mortality – Probability of death between ages 15-60 per 1,000 individuals. 6. Infant Deaths – Number of infant deaths per 1,000 live births. 7. Alcohol – Per capita alcohol consumption. 8. Percentage Expenditure – Government health expenditure as a percentage of GDP. 9. Hepatitis B – Immunization coverage percentage. 10. Measles – Number of reported measles cases. 11. BMI – Average Body Mass Index. 12. Under-Five Deaths – Mortality rate for children under five. 13. Polio & Diphtheria – Immunization rates. 14. HIV/AIDS – Deaths due to HIV/AIDS per 1,000 individuals. 15. GDP – Gross Domestic Product per capita. 16. Population – Total population of the country. 17. Thinness (1-19 years, 5-9 years) – Percentage of underweight children. 18. Income Composition of Resources– Human development index proxy. 19. Schooling– Average number of years of schooling. Missing Data: Some columns (like Hepatitis B, GDP, Population, Total Expenditure) contain missing values. Further File Information: Total Countries: 193 Years Covered: 2000–2015 Total Entries: 2,938 Missing Data Overview: Some columns have missing values, notably: Hepatitis B (553 missing) GDP (448 missing) Population (652 missing) Total expenditure (226 missing) Income Composition of Resources (167 missing) Schooling (163 missing) Summary Statistics: Life Expectancy:

    Range: 36.3 to 89 years Mean: 69.2 years Adult Mortality:

    Mean: 165 per 1,000 Max: 723 per 1,000 GDP per Capita:

    Mean: $7,483 Max: $119,172 Population:

    Mean: ~12.75 million Max: 1.29 billion Education:

    Schooling Average: 12 years Max: 20.7 years

    Futuristic Scope of this data: For comparative analysis of the 2000–2015 life expectancy dataset with new datasets on the same parametres , you can perform several statistical tests and analytical methods based on different research questions. Below are some key tests and approaches:

    1. Trend Analysis (Time-Series) Objective: Identify trends in life expectancy and related indicators over time. Methods: Moving Averages: Smooth fluctuations to detect trends. Linear/Polynomial Regression: Check whether life expectancy follows an increasing or decreasing trend. Time-Series Decomposition: Separate data into trend, seasonality, and residuals.
    2. Descriptive Statistics & Comparative Summary Objective: Compare summary statistics between years or groups. Tests/Methods: Mean, Median, Standard Deviation: Compare distributions of life expectancy, GDP, or schooling. Boxplots & Histograms: Show variations over different years or between developing vs. developed countries. Coefficient of Variation (CV): Compare variability in life expectancy across regions.
    3. Correlation & Regression Analysis Objective: Examine relationships between variables. Methods: Pearson/Spearman Correlation: Check relationships between life expectancy and GDP, health expenditure, etc. Multiple Linear Regression: Predict life expectancy based on GDP, immunization, and schooling. Multicollinearity (VIF Test): Ensure independent variables are not highly correlated.
    4. Hypothesis Testing (Comparative Analysis) Test Objective When to Use? t-Test (Independent Samples) Compare life expectancy between developed & developing nations Two groups (e.g., 2000 vs. 2015, or developed vs. developing) Paired t-Test Compare life expectancy in the same country over two time periods Before/after comparison (e.g., 2000 vs. 2015 for the same country) ANOVA (One-Way) Compare life expectancy across multiple groups More than two groups (e.g., continents or income groups) Chi-Square Test Test if categorical distributions (e.g., immunization coverage) differ over time Categorical variables (e.g., immunization rates vs. year)
    5. Clustering & Classification (Machine Learning) Objective: Group countries based on life expectancy patterns. Methods: K-Means Clustering: Identify groups with similar life expectancy trends. Hierarchical Clustering: Create a country similarity tree. Decision Trees/Random Forest: Classify countries based on development status using life expectancy factors.
    6. Forecasting Future Trends Objective: Predict life expectancy in future years using historical data. Methods: ARIMA (AutoRegressive Integrated Moving Average): Time-series forecasting. Exponential Smoothing: Forecast gradual trends. Machine Learning (LSTM, XGBoost): Predict based on multiple indicators.
    7. Comparative Regional Analysis O...
  2. c

    Life Expectancy (WHO) Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Life Expectancy (WHO) Dataset [Dataset]. https://cubig.ai/store/products/370/life-expectancy-who-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Life Expectancy (WHO) Dataset is a WHO-based national health dataset that tabulates life expectancy, vaccination, mortality, economy, and society in 193 countries around the world from 2000 to 2015.

    2) Data Utilization (1) Life Expectancy (WHO) Dataset has characteristics that: • Each row contains more than 20 health, economic, and social variables and target variables (life expectancy), including country, year, life expectancy, vaccination rates (e.g., hepatitis B, polio, diphtheria), infant and adult mortality, GDP, population, education level, drinking and smoking. • Although some missing values exist in the data, they are well structured for analysis of health levels and influencing factors by country, including data from various countries and time series. (2) Life Expectancy (WHO) Dataset can be used to: • Analysis of factors affecting life expectancy: The effects of various factors such as vaccination, mortality, economic and social variables on life expectancy can be assessed using statistical methods such as regression analysis. • Health Policy and International Comparative Study: Using national and annual health indicators, it can be used for international health research, such as evaluating the effectiveness of health policies, analyzing health gaps, and establishing strategies to support low-income countries.

  3. Life Expectancy (WHO)

    • kaggle.com
    zip
    Updated Feb 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KumarRajarshi (2018). Life Expectancy (WHO) [Dataset]. https://www.kaggle.com/kumarajarshi/life-expectancy-who
    Explore at:
    zip(121472 bytes)Available download formats
    Dataset updated
    Feb 10, 2018
    Authors
    KumarRajarshi
    Description

    Context

    Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. Hence, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.

    Content

    The project relies on accuracy of data. The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data-sets are made available to public for the purpose of health data analysis. The data-set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative. It has been observed that in the past 15 years , there has been a huge development in health sector resulting in improvement of human mortality rates especially in the developing nations in comparison to the past 30 years. Therefore, in this project we have considered data from year 2000-2015 for 193 countries for further analysis. The individual data files have been merged together into a single data-set. On initial visual inspection of the data showed some missing values. As the data-sets were from WHO, we found no evident errors. Missing data was handled in R software by using Missmap command. The result indicated that most of the missing data was for population, Hepatitis B and GDP. The missing data were from less known countries like Vanuatu, Tonga, Togo, Cabo Verde etc. Finding all data for these countries was difficult and hence, it was decided that we exclude these countries from the final model data-set. The final merged file(final dataset) consists of 22 Columns and 2938 rows which meant 20 predicting variables. All predicting variables was then divided into several broad categories:​Immunization related factors, Mortality factors, Economical factors and Social factors.

    Acknowledgements

    The data was collected from WHO and United Nations website with the help of Deeksha Russell and Duan Wang.

    Inspiration

    The data-set aims to answer the following key questions: 1. Does various predicting factors which has been chosen initially really affect the Life expectancy? What are the predicting variables actually affecting the life expectancy? 2. Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan? 3. How does Infant and Adult mortality rates affect life expectancy? 4. Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc. 5. What is the impact of schooling on the lifespan of humans? 6. Does Life Expectancy have positive or negative relationship with drinking alcohol? 7. Do densely populated countries tend to have lower life expectancy? 8. What is the impact of Immunization coverage on life Expectancy?

  4. e

    EU Life Expectancy - 2013

    • data.europa.eu
    csv, html, json +2
    Updated Feb 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Directorate-General for Regional and Urban Policy (2016). EU Life Expectancy - 2013 [Dataset]. https://data.europa.eu/data/datasets/eu-life-expectancy-2011?locale=hr
    Explore at:
    json, html, xml, rdf xml, csvAvailable download formats
    Dataset updated
    Feb 19, 2016
    Dataset authored and provided by
    Directorate-General for Regional and Urban Policy
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Area covered
    European Union
    Description

    This dataset shows the life expectancy at regional level for 2011.

    Life expectancy in the EU, which is a reflection of well-being, is among the highest in the world. Of the 50 countries in the world with the highest life expectancy in 2012, 21 were EU Member States, 18 of which had a higher life expectancy than the US. Differences between regions in the EU are marked. Life expectancy at birth is less than 74 in many partsof Bulgaria as well as in Latvia and Lithuania, while overall across the EU it is over 80 years in two out of every three regions. In 17 regions in Spain, France and Italy, it is 83 years or more.

    EU-28 = 80.3 . BE, IT, UK: 2010. Source: Eurostat

  5. Life expectancy at various ages, by population group and sex, Canada

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Dec 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2015). Life expectancy at various ages, by population group and sex, Canada [Dataset]. http://doi.org/10.25318/1310013401-eng
    Explore at:
    Dataset updated
    Dec 17, 2015
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).

  6. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  7. Health Inequality Project

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  8. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  9. S

    Spain ES: Life Expectancy at Birth: Total

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Spain ES: Life Expectancy at Birth: Total [Dataset]. https://www.ceicdata.com/en/spain/health-statistics/es-life-expectancy-at-birth-total
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Spain
    Description

    Spain ES: Life Expectancy at Birth: Total data was reported at 82.832 Year in 2016. This stayed constant from the previous number of 82.832 Year for 2015. Spain ES: Life Expectancy at Birth: Total data is updated yearly, averaging 76.747 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 83.229 Year in 2014 and a record low of 69.109 Year in 1960. Spain ES: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Spain – Table ES.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  10. d

    Replication Data for: The Association Between Income and Life Expectancy in...

    • dataone.org
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bergeron, Augustin; Chetty, Raj; Cutler, David; Scuderi, Benjamin; Stepner, Michael; Turner, Nicholas (2023). Replication Data for: The Association Between Income and Life Expectancy in the United States, 2001-2014 [Dataset]. http://doi.org/10.7910/DVN/VVW76J
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bergeron, Augustin; Chetty, Raj; Cutler, David; Scuderi, Benjamin; Stepner, Michael; Turner, Nicholas
    Area covered
    United States
    Description

    This dataset contains replication files for "The Association Between Income and Life Expectancy in the United States, 2001-2014" by Augustin Bergeron, Raj Chetty, David Cutler, Benjamin Scuderi, Michael Stepner, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/lifeexpectancy/. A summary of the related publication follows. How can we reduce socioeconomic disparities in health outcomes? Although it is well known that there are significant differences in health and longevity between income groups, debate remains about the magnitudes and determinants of these differences. We use new data from 1.4 billion anonymous earnings and mortality records to construct more precise estimates of the relationship between income and life expectancy at the national level than was feasible in prior work. We then construct new local area (county and metro area) estimates of life expectancy by income group and identify factors that are associated with higher levels of life expectancy for low-income individuals. Our findings show that disparities in life expectancy are not inevitable. There are cities throughout America — from New York to San Francisco to Birmingham, AL — where gaps in life expectancy are relatively small or are narrowing over time. Replicating these successes more broadly will require targeted local efforts, focusing on improving health behaviors among the poor in cities such as Las Vegas and Detroit. Our findings also imply that federal programs such as Social Security and Medicare are less redistributive than they might appear because low-income individuals obtain these benefits for significantly fewer years than high-income individuals, especially in cities like Detroit. Going forward, the challenge is to understand the mechanisms that lead to better health and longevity for low-income individuals in some parts of the U.S. To facilitate future research and monitor local progress, we have posted annual statistics on life expectancy by income group and geographic area (state, CZ, and county) at The Health Inequality Project website. Using these data, researchers will be able to study why certain places have high or improving levels of life expectancy and ultimately apply these lessons to reduce health disparities in other parts of the country.

  11. V

    Vietnam Total Life Expectancy at Birth: Whole Country

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Vietnam Total Life Expectancy at Birth: Whole Country [Dataset]. https://www.ceicdata.com/en/vietnam/vital-statistics/total-life-expectancy-at-birth-whole-country
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Vietnam
    Description

    Vietnam Total Life Expectancy at Birth: Whole Country data was reported at 73.400 Year in 2016. This records an increase from the previous number of 73.300 Year for 2015. Vietnam Total Life Expectancy at Birth: Whole Country data is updated yearly, averaging 73.000 Year from Dec 2005 (Median) to 2016, with 9 observations. The data reached an all-time high of 73.400 Year in 2016 and a record low of 72.200 Year in 2005. Vietnam Total Life Expectancy at Birth: Whole Country data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G058: Vital Statistics.

  12. Gapminder dataset

    • kaggle.com
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto Vidal (2022). Gapminder dataset [Dataset]. https://www.kaggle.com/datasets/albertovidalrod/gapminder-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alberto Vidal
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This data set has been generated using data from the Gapminder website, which focuses on gathering and sharing statistics and other information about social, economic and environmental development at local, national and global levels.

    This particular data set describes the values of several parameters (see the list below) between 1998 and 2018 for a total of 175 countries, having a total of 3675 rows. The parameters included in the data set and the column name of the dataframe are as follows:

    • Country (country). Describes the country name
    • Continent (continent). Describes the continent to which the country belongs
    • Year (year). Describes the year to which the data belongs
    • Life expectancy (life_exp). Describes the life expectancy for a given country in a given year
    • Human Development Index (hdi_index). Describes the HDI index value for a given country in a given year
    • CO2 emissions per person(co2_consump). Describes the CO2 emissions in tonnes per person for a given country in a given year
    • Gross Domestic Product per capita (gdp). Describes the GDP per capita in dollars for a given country in a given year
    • % Service workers (services). Describes the the % of service workers for a given country in a given year
  13. S

    Sweden SE: Life Expectancy at Birth: Total

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Sweden SE: Life Expectancy at Birth: Total [Dataset]. https://www.ceicdata.com/en/sweden/health-statistics/se-life-expectancy-at-birth-total
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Sweden
    Description

    Sweden SE: Life Expectancy at Birth: Total data was reported at 82.205 Year in 2016. This stayed constant from the previous number of 82.205 Year for 2015. Sweden SE: Life Expectancy at Birth: Total data is updated yearly, averaging 77.092 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 82.254 Year in 2014 and a record low of 73.006 Year in 1960. Sweden SE: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  14. Death in the United States

    • kaggle.com
    zip
    Updated Aug 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2017). Death in the United States [Dataset]. https://www.kaggle.com/datasets/cdc/mortality
    Explore at:
    zip(766333584 bytes)Available download formats
    Dataset updated
    Aug 3, 2017
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.

    It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.

    Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.

    Overview

    This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.

    A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.

    All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.

    Project ideas

    • The CDC's mortality data was the basis of a widely publicized paper, by Anne Case and Nobel prize winner Angus Deaton, arguing that middle-aged whites are dying at elevated rates. One of the criticisms against the paper is that it failed to properly account for the exact ages within the broad bins available through the CDC's WONDER tool. What do these results look like with exact/not-binned age data?
    • Similarly, how sensitive are the mortality trends being discussed in the news to the choice of bin-widths?
    • As noted above, the data preparation process could have introduced errors. Can you find any discrepancies compared to the aggregate metrics on WONDER? If so, please let me know in the forums!
    • WONDER is cited in numerous economics, sociology, and public health research papers. Can you find any papers whose conclusions would be altered if they used the exact data available here rather than binned data from Wonder?

    Differences from the first version of the dataset

    • This version of the dataset was prepared in a completely different many. This has allowed us to provide a much larger volume of data and ensure that codes are available for every field.
    • We've replaced the batch of sql files with a single JSON per year. Kaggle's platform currently offer's better support for JSON files, and this keeps the number of files manageable.
    • A tutorial kernel providing a quick introduction to the new format is available here.
    • Lastly, I apologize if the transition has interrupted anyone's work! If need be, you can still download v1.
  15. m

    Life expectancy at age 60, female (years) - Seychelles

    • macro-rankings.com
    csv, excel
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Life expectancy at age 60, female (years) - Seychelles [Dataset]. https://www.macro-rankings.com/seychelles/life-expectancy-at-age-60-female-(years)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Seychelles
    Description

    Time series data for the statistic Life expectancy at age 60, female (years) and country Seychelles. Indicator Definition:Life expectancy at age 60, female is the average number of years that a female at age 60 would live if prevailing patterns of mortality at the time of age 60 were to stay the same throughout her life.The indicator "Life expectancy at age 60, female (years)" stands at 20.88 as of 12/31/2023. Regarding the One-Year-Change of the series, the current value constitutes an increase of 6.97 percent compared to the value the year prior.The 1 year change in percent is 6.97.The 3 year change in percent is -9.83.The 5 year change in percent is 1.02.The 10 year change in percent is 0.7689.The Serie's long term average value is 19.46. It's latest available value, on 12/31/2023, is 7.31 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/1960, to it's latest available value, on 12/31/2023, is +25.12%.The Serie's change in percent from it's maximum value, on 12/31/2020, to it's latest available value, on 12/31/2023, is -9.83%.

  16. f

    Life Expectancy with and without Cognitive Impairment in Seven Latin...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimberly Ashby-Mitchell; Carol Jagger; Tony Fouweather; Kaarin J. Anstey (2023). Life Expectancy with and without Cognitive Impairment in Seven Latin American and Caribbean Countries [Dataset]. http://doi.org/10.1371/journal.pone.0121867
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Kimberly Ashby-Mitchell; Carol Jagger; Tony Fouweather; Kaarin J. Anstey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America, Caribbean
    Description

    BackgroundThe rising prevalence of cognitive impairment is an increasing challenge with the ageing of our populations but little is known about the burden in low- and middle- income Latin American and Caribbean countries (LAC) that are aging more rapidly than their developed counterparts. We examined life expectancies with cognitive impairment (CILE) and free of cognitive impairment (CIFLE) in seven developing LAC countries.MethodsData from The Survey on Health, Well-being and Ageing in LAC (N = 10,597) was utilised and cognitive status was assessed by the Mini-Mental State Examination (MMSE). The Sullivan Method was applied to estimate CILE and CIFLE. Logistic regression was used to determine the effect of age, gender and education on cognitive outcome. Meta-regression models were fitted for all 7 countries together to investigate the relationship between CIFLE and education in men and women at age 60.ResultsThe prevalence of CI increased with age in all countries except Uruguay and with a significant gender effect observed only in Mexico where men had lower odds of CI compared to women [OR = 0.464 95% CInt (0.268 – 0.806)]. Low education was associated with increased prevalence of CI in Brazil [OR = 4.848 (1.173–20.044)], Chile [OR = 3.107 (1.098–8.793), Cuba [OR = 2.295 (1.247–4.225)] and Mexico [OR = 3.838 (1.368–10.765). For males, total life expectancy (TLE) at age 60 was highest in Cuba (19.7 years) and lowest in Brazil and Uruguay (17.6 years). TLE for females at age 60 was highest for Chileans (22.8 years) and lowest for Brazilians (20.2 years). CIFLE for men was greatest in Cuba (19.0 years) and least in Brazil (16.7 years). These differences did not appear to be explained by educational level (Men: p = 0.408, women: p = 0.695).ConclusionIncreasing age, female sex and low education were associated with higher CI in LAC reflecting patterns found in other countries.

  17. Life table data for "Bounce backs amid continued losses: Life expectancy...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6861866
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    • `id`: unique row identifier
    • `region_iso`: iso3166-2 region codes
    • `sex`: Male, Female, Total
    • `year`: iso year
    • `age_start`: start of age group
    • `age_width`: width of age group, Inf for age_start 100, otherwise 1
    • `nweeks_year`: number of weeks in that year, 52 or 53
    • `death_total`: number of deaths by any cause
    • `population_py`: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)
    • `death_total_nweeksmiss`: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)
    • `death_total_minnageraw`: the minimum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_maxnageraw`: the maximum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_minopenageraw`: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_maxopenageraw`: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_source`: source of the all-cause death data
    • `death_total_prop_q1`: observed proportion of deaths in first quarter of year

    • `death_total_prop_q2`: observed proportion of deaths in second quarter of year

    • `death_total_prop_q3`: observed proportion of deaths in third quarter of year

    • `death_total_prop_q4`: observed proportion of deaths in fourth quarter of year

    • `death_expected_prop_q1`: expected proportion of deaths in first quarter of year

    • `death_expected_prop_q2`: expected proportion of deaths in second quarter of year

    • `death_expected_prop_q3`: expected proportion of deaths in third quarter of year

    • `death_expected_prop_q4`: expected proportion of deaths in fourth quarter of year

    • `population_midyear`: midyear population (July 1st)
    • `population_source`: source of the population count/exposure data
    • `death_covid`: number of deaths due to covid
    • `death_covid_date`: number of deaths due to covid as of
    • `death_covid_nageraw`: the number of age groups in the covid input data
    • `ex_wpp_estimate`: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year
    • `ex_hmd_estimate`: life expectancy estimates from the Human Mortality Database
    • `nmx_hmd_estimate`: death rate estimates from the Human Mortality Database
    • `nmx_cntfc`: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    • source:
    • STMF:
      • harmonized to single ages via pclm
      • pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110
      • smoothing parameters estimated via BIC grid search seperately for every pclm iteration
      • last age group set to [110,111)
      • ages 100:110+ are then summed into 100+ to be consistent with mid-year population information
      • deaths in unknown weeks are considered; deaths in unknown ages are not considered
    • ONS:
      • data already in single ages
      • ages 100:105+ are summed into 100+ to be consistent with mid-year population information
      • PCLM smoothing applied to for consistency reasons
    • CDC:
      • The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    • source:
      • for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019
      • for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100
    • mid-year population
      • mid-year population translated into exposures:
        • if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates
        • if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364\*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    • source: COVerAGE-DB (https://osf.io/mpwjq/)
    • the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

  18. f

    Data from: Ambient PM2.5 Reduces Global and Regional Life Expectancy

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Aug 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pope, C. Arden; Apte, Joshua S.; Cohen, Aaron J.; Ezzati, Majid; Brauer, Michael (2018). Ambient PM2.5 Reduces Global and Regional Life Expectancy [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000652610
    Explore at:
    Dataset updated
    Aug 21, 2018
    Authors
    Pope, C. Arden; Apte, Joshua S.; Cohen, Aaron J.; Ezzati, Majid; Brauer, Michael
    Description

    Exposure to ambient fine particulate matter (PM2.5) air pollution is a major risk for premature death. Here, we systematically quantify the global impact of PM2.5 on life expectancy. Using data from the Global Burden of Disease project and actuarial standard life table methods, we estimate global and national decrements in life expectancy that can be attributed to ambient PM2.5 for 185 countries. In 2016, PM2.5 exposure reduced average global life expectancy at birth by ∼1 year with reductions of ∼1.2–1.9 years in polluted countries of Asia and Africa. If PM2.5 in all countries met the World Health Organization Air Quality Guideline (10 μg m–3), we estimate life expectancy could increase by a population-weighted median of 0.6 year (interquartile range of 0.2–1.0 year), a benefit of a magnitude similar to that of eradicating lung and breast cancer. Because background disease rates modulate the effect of air pollution on life expectancy, high age-specific rates of cardiovascular disease in many polluted low- and middle-income countries amplify the impact of PM2.5 on survival. Our analysis adds to prior research by illustrating how mortality from air pollution substantially reduces human longevity.

  19. N

    Norway NO: Life Expectancy at Birth: Male

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Norway NO: Life Expectancy at Birth: Male [Dataset]. https://www.ceicdata.com/en/norway/health-statistics/no-life-expectancy-at-birth-male
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Norway
    Description

    Norway NO: Life Expectancy at Birth: Male data was reported at 80.900 Year in 2016. This records an increase from the previous number of 80.500 Year for 2015. Norway NO: Life Expectancy at Birth: Male data is updated yearly, averaging 73.040 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 80.900 Year in 2016 and a record low of 70.780 Year in 1963. Norway NO: Life Expectancy at Birth: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  20. g

    State of World Liberty Project, World Freedom Index, Worldwide by Country,...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). State of World Liberty Project, World Freedom Index, Worldwide by Country, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    State of World Liberty Project
    data
    Description

    This is the World Freedom index, By the State of World Liberty Project. It ranks various countries by various forms of freedom and created an index to see which countries had the most freedom. USA finished 8th, with Estonia in 1st place and North Korea having the least freedom. Source URL: http://www.stateofworldliberty.org/report/rankings.html This Dataset has a ranking for the countries, just to be clear, when you map out the rankings of countries, the highest ranked countries will not be the brightest on the map. Estonia is Ranked #1, but the value of 1 is lower than the value assigned to North Korea (158). so just be aware of that. In short, for mapping, use the Scores not the Ranks.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
faisal.1001 (2025). Life Expectancy 2000 to 2015 all nations. [Dataset]. https://www.kaggle.com/datasets/faisal1001/life-expectancy-2000-to-2015-all-nations
Organization logo

Life Expectancy 2000 to 2015 all nations.

Life Expectancy Across All Nations (2000–2015): Trends and Insights

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 17, 2025
Dataset provided by
Kaggle
Authors
faisal.1001
License

https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

Description

File Description: "Life Expectancy Data.csv" This dataset contains 2,938 entries and 22 columns, covering life expectancy and related health indicators for multiple nations from 2000 to 2015. It includes country-wise data and other economic, social, and health metrics. Column Description: 1. Country – Name of the country. 2. Year – Data year (ranging from 2000 to 2015). 3. Status – Economic classification (Developing/Developed). 4. Life expectancy – Average lifespan in years. 5. Adult Mortality – Probability of death between ages 15-60 per 1,000 individuals. 6. Infant Deaths – Number of infant deaths per 1,000 live births. 7. Alcohol – Per capita alcohol consumption. 8. Percentage Expenditure – Government health expenditure as a percentage of GDP. 9. Hepatitis B – Immunization coverage percentage. 10. Measles – Number of reported measles cases. 11. BMI – Average Body Mass Index. 12. Under-Five Deaths – Mortality rate for children under five. 13. Polio & Diphtheria – Immunization rates. 14. HIV/AIDS – Deaths due to HIV/AIDS per 1,000 individuals. 15. GDP – Gross Domestic Product per capita. 16. Population – Total population of the country. 17. Thinness (1-19 years, 5-9 years) – Percentage of underweight children. 18. Income Composition of Resources– Human development index proxy. 19. Schooling– Average number of years of schooling. Missing Data: Some columns (like Hepatitis B, GDP, Population, Total Expenditure) contain missing values. Further File Information: Total Countries: 193 Years Covered: 2000–2015 Total Entries: 2,938 Missing Data Overview: Some columns have missing values, notably: Hepatitis B (553 missing) GDP (448 missing) Population (652 missing) Total expenditure (226 missing) Income Composition of Resources (167 missing) Schooling (163 missing) Summary Statistics: Life Expectancy:

Range: 36.3 to 89 years Mean: 69.2 years Adult Mortality:

Mean: 165 per 1,000 Max: 723 per 1,000 GDP per Capita:

Mean: $7,483 Max: $119,172 Population:

Mean: ~12.75 million Max: 1.29 billion Education:

Schooling Average: 12 years Max: 20.7 years

Futuristic Scope of this data: For comparative analysis of the 2000–2015 life expectancy dataset with new datasets on the same parametres , you can perform several statistical tests and analytical methods based on different research questions. Below are some key tests and approaches:

  1. Trend Analysis (Time-Series) Objective: Identify trends in life expectancy and related indicators over time. Methods: Moving Averages: Smooth fluctuations to detect trends. Linear/Polynomial Regression: Check whether life expectancy follows an increasing or decreasing trend. Time-Series Decomposition: Separate data into trend, seasonality, and residuals.
  2. Descriptive Statistics & Comparative Summary Objective: Compare summary statistics between years or groups. Tests/Methods: Mean, Median, Standard Deviation: Compare distributions of life expectancy, GDP, or schooling. Boxplots & Histograms: Show variations over different years or between developing vs. developed countries. Coefficient of Variation (CV): Compare variability in life expectancy across regions.
  3. Correlation & Regression Analysis Objective: Examine relationships between variables. Methods: Pearson/Spearman Correlation: Check relationships between life expectancy and GDP, health expenditure, etc. Multiple Linear Regression: Predict life expectancy based on GDP, immunization, and schooling. Multicollinearity (VIF Test): Ensure independent variables are not highly correlated.
  4. Hypothesis Testing (Comparative Analysis) Test Objective When to Use? t-Test (Independent Samples) Compare life expectancy between developed & developing nations Two groups (e.g., 2000 vs. 2015, or developed vs. developing) Paired t-Test Compare life expectancy in the same country over two time periods Before/after comparison (e.g., 2000 vs. 2015 for the same country) ANOVA (One-Way) Compare life expectancy across multiple groups More than two groups (e.g., continents or income groups) Chi-Square Test Test if categorical distributions (e.g., immunization coverage) differ over time Categorical variables (e.g., immunization rates vs. year)
  5. Clustering & Classification (Machine Learning) Objective: Group countries based on life expectancy patterns. Methods: K-Means Clustering: Identify groups with similar life expectancy trends. Hierarchical Clustering: Create a country similarity tree. Decision Trees/Random Forest: Classify countries based on development status using life expectancy factors.
  6. Forecasting Future Trends Objective: Predict life expectancy in future years using historical data. Methods: ARIMA (AutoRegressive Integrated Moving Average): Time-series forecasting. Exponential Smoothing: Forecast gradual trends. Machine Learning (LSTM, XGBoost): Predict based on multiple indicators.
  7. Comparative Regional Analysis O...
Search
Clear search
Close search
Google apps
Main menu