Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The "Per Capita GDP of All Countries 1970 to 2022" dataset provides a comprehensive overview of the economic performance of all countries in the world from 1970 to 2022 in US Dollar. This dataset includes several key columns:
Country: This column lists the names of the countries included in the dataset. Year: This column indicates the specific year for which the GDP data is recorded from 1970 to 2022. By analyzing this dataset, you can observe trends in economic growth, identify periods of significant economic change, and compare the economic performance of different countries over time. This information is valuable for economists, researchers, policymakers, and anyone interested in understanding the economic history and development of nations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🌍 Global GDP by Country — 2024 Edition
The Global GDP by Country (2024) dataset provides an up-to-date snapshot of worldwide economic performance, summarizing each country’s nominal GDP, growth rate, population, and global economic contribution.
This dataset is ideal for economic analysis, data visualization, policy modeling, and machine learning applications related to global development and financial forecasting.
🎯 Target Use-Cases:
- Economic growth trend analysis
- GDP-based country clustering
- Per capita wealth comparison
- Share of world economy visualization
| Feature Name | Description |
|---|---|
| Country | Official country name |
| GDP (nominal, 2023) | Total nominal GDP in USD |
| GDP (abbrev.) | Simplified GDP format (e.g., “$25.46 Trillion”) |
| GDP Growth | Annual GDP growth rate (%) |
| Population 2023 | Estimated population for 2023 |
| GDP per capita | Average income per person (USD) |
| Share of World GDP | Percentage contribution to global GDP |
💰 Top Economies (Nominal GDP):
United States, China, Japan, Germany, India
📈 Fastest Growing Economies:
India, Bangladesh, Vietnam, and Rwanda
🌐 Global Insights:
- The dataset covers 181 countries representing 100% of global GDP.
- Suitable for data visualization dashboards, AI-driven economic forecasting, and educational research.
Source: Worldometers — GDP by Country (2024)
Dataset compiled and cleaned by: Asadullah Shehbaz
For open research and data analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.
Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.
Small changes in estimates between years should be treated with caution as they may not be statistically significant.
Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Country Club Hills, IL, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club Hills median household income. You can refer the same here
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Indonesia GDP Per Capita data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterDataset replaced by: http://data.europa.eu/euodp/data/dataset/e7XSsvplRDKyJkFqPz9B2w Please be aware that annual and quarterly national accounts' volume figures are expressed in chain-linked volumes with a reference year 2005. Thus, the figures for this indicator are not comparable with previous releases. For more information, click here. GDP includes goods and services that have markets (or which could have markets) and products which are produced by general government and non-profit institutions. For measuring the growth rate of real GDP, the GDP at current prices are valued in prices of the previous year and the thus computed volume changes are imposed on the level of a reference year; this is called a chain-linked series. Accordingly, price movements will not inflate the growth rate. Real GDP per capita is calculated as the ratio of real GDP to the average population of a specific year. It is often used as an indicator of how well off a country is, since it is a measure of average real income in that country. However, it is not a complete measure of economic welfare. For example, GDP does not include most unpaid household work. Neither does GDP take account of negative effects of economic activity, like environmental degradation. Real GDP per capita is based on rounded figures. Discrepancies in tables between totals and percentages are due to rounding.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂
Facebook
TwitterThis intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).
The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.
Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:
age: the age of an individual.workclass: The type of work or employment of an individual. It can have the following categories:
Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.
We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.
People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.
education: The highest level of education completed. education-num: The number of years of education completed. marital-status: The marital status. occupation: Type of work performed by an individual.relationship: The relationship status.race: The race of an individual. sex: The gender of an individual.capital-gain: The amount of capital gain (financial profit).capital-loss: The amount of capital loss an individual has incurred.hours-per-week: The number of hours works per week.native-country: The country of origin or the native country.income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA PPP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in India was last recorded at 2396.71 US dollars in 2024. The GDP per Capita in India is equivalent to 19 percent of the world's average. This dataset provides - India GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gross domestic product (GDP) is a measure for the economic activity. It refers to the value of the total output of goods and services produced by an economy, less intermediate consumption, plus net taxes on products and imports. GDP per capita is calculated as the ratio of GDP to the average population in a specific year. Basic figures are expressed in purchasing power standards (PPS), which represents a common currency that eliminates the differences in price levels between countries to allow meaningful volume comparisons of GDP. The values are also offered as an index calculated in relation to the European Union average set to equal 100. If the index of a country is higher than 100, this country's level of GDP per head is higher than the EU average and vice versa. Please note that this index is intended for cross-country comparisons rather than for temporal comparisons. Finally, the disparities indicator offered for EU aggregates is calculated as the coefficient of variation of the national figures. This time series offers a measure of the convergence of economic activity between the EU Member States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 8.100 % in 2021. This records an increase from the previous number of 7.900 % for 2020. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 9.100 % from Dec 1985 (Median) to 2021, with 25 observations. The data reached an all-time high of 10.500 % in 2015 and a record low of 6.000 % in 1985. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belgium – Table BE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the countries in this dataset have a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.
See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.
VARIABLE DESCRIPTIONS:
unid: ISO numeric country code (used by the United Nations)
wbid: ISO alpha country code (used by the World Bank)
SES: Country socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174)
country: Short country name
year: Survey year
gdppc: GDP per capita: Single time-series (imputed)
yrseduc: Completed years of education in the adult (15+) population
region5: Five category regional coding schema
regionUN: United Nations regional coding schema
DATA SOURCES:
The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita:
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.
World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm
Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
United Nations Population Division. 2009.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in Saudi Arabia was last recorded at 24917.19 US dollars in 2024. The GDP per Capita in Saudi Arabia is equivalent to 197 percent of the world's average. This dataset provides the latest reported value for - Saudi Arabia GDP per capita - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The "Per Capita GDP of All Countries 1970 to 2022" dataset provides a comprehensive overview of the economic performance of all countries in the world from 1970 to 2022 in US Dollar. This dataset includes several key columns:
Country: This column lists the names of the countries included in the dataset. Year: This column indicates the specific year for which the GDP data is recorded from 1970 to 2022. By analyzing this dataset, you can observe trends in economic growth, identify periods of significant economic change, and compare the economic performance of different countries over time. This information is valuable for economists, researchers, policymakers, and anyone interested in understanding the economic history and development of nations.