100+ datasets found
  1. Rankings of Countries Dataset

    • kaggle.com
    zip
    Updated Jul 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuv๐Ÿ˜ˆ (2023). Rankings of Countries Dataset [Dataset]. https://www.kaggle.com/datasets/shuvammandal121/global-country-rankings-dataset
    Explore at:
    zip(11539 bytes)Available download formats
    Dataset updated
    Jul 17, 2023
    Authors
    Shuv๐Ÿ˜ˆ
    Description

    Content

    The "Global Country Rankings Dataset" is a comprehensive collection of metrics and indicators that ranks countries worldwide based on their socioeconomic performance. This datasets are providing valuable insights into the relative standings of nations in terms of key factors such as GDP per capita, economic growth, and various other relevant criteria.

    Researchers, analysts, and policymakers can leverage this dataset to gain a deeper understanding of the global economic landscape and track the progress of countries over time. The dataset covers a wide range of metrics, including but not limited to:

    Economic growth: the rate of change of real GDP- Country rankings: The average for 2021 based on 184 countries was 5.26 percent.The highest value was in the Maldives: 41.75 percent and the lowest value was in Afghanistan: -20.74 percent. The indicator is available from 1961 to 2021.

    GDP per capita, Purchasing Power Parity - Country rankings: The average for 2021 based on 182 countries was 21283.21 U.S. dollars.The highest value was in Luxembourg: 115683.49 U.S. dollars and the lowest value was in Burundi: 705.03 U.S. dollars. The indicator is available from 1990 to 2021.

    GDP per capita, current U.S. dollars - Country rankings: The average for 2021 based on 186 countries was 17937.03 U.S. dollars.The highest value was in Monaco: 234315.45 U.S. dollars and the lowest value was in Burundi: 221.48 U.S. dollars. The indicator is available from 1960 to 2021.

    GDP per capita, constant 2010 dollars - Country rankings: The average for 2021 based on 184 countries was 15605.8 U.S. dollars.The highest value was in Monaco: 204190.16 U.S. dollars and the lowest value was in Burundi: 261.02 U.S. dollars. The indicator is available from 1960 to 2021.

    source: https://www.theglobaleconomy.com/

  2. ๐Ÿ’ฐ Global GDP Dataset (Latest)

    • kaggle.com
    zip
    Updated Oct 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asadullah Shehbaz (2025). ๐Ÿ’ฐ Global GDP Dataset (Latest) [Dataset]. https://www.kaggle.com/datasets/asadullahcreative/global-gdp-explorer-2024-world-bank-un-data
    Explore at:
    zip(6672 bytes)Available download formats
    Dataset updated
    Oct 17, 2025
    Authors
    Asadullah Shehbaz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    ๐Ÿงพ About Dataset

    ๐ŸŒ Global GDP by Country โ€” 2024 Edition

    ๐Ÿ“– Overview

    The Global GDP by Country (2024) dataset provides an up-to-date snapshot of worldwide economic performance, summarizing each countryโ€™s nominal GDP, growth rate, population, and global economic contribution.

    This dataset is ideal for economic analysis, data visualization, policy modeling, and machine learning applications related to global development and financial forecasting.

    ๐Ÿ“Š Dataset Information

    • Total Records: 181 countries
    • Time Period: 2024 (latest available global data)
    • Geographic Coverage: Worldwide
    • File Format: CSV
    • File Size: ~10 KB
    • Missing Values: None (100% complete dataset)

    ๐ŸŽฏ Target Use-Cases:
    - Economic growth trend analysis
    - GDP-based country clustering
    - Per capita wealth comparison
    - Share of world economy visualization

    ๐Ÿงฉ Key Features

    Feature NameDescription
    CountryOfficial country name
    GDP (nominal, 2023)Total nominal GDP in USD
    GDP (abbrev.)Simplified GDP format (e.g., โ€œ$25.46 Trillionโ€)
    GDP GrowthAnnual GDP growth rate (%)
    Population 2023Estimated population for 2023
    GDP per capitaAverage income per person (USD)
    Share of World GDPPercentage contribution to global GDP

    ๐Ÿ“ˆ Statistical Summary

    Population Overview

    • Mean Population: 43.6 million
    • Standard Deviation: 155.5 million
    • Minimum Population: 9,816 (small island nations)
    • Median Population: 9.1 million
    • Maximum Population: 1.43 billion (China)

    ๐ŸŒŸ Highlights

    ๐Ÿ’ฐ Top Economies (Nominal GDP):
    United States, China, Japan, Germany, India

    ๐Ÿ“ˆ Fastest Growing Economies:
    India, Bangladesh, Vietnam, and Rwanda

    ๐ŸŒ Global Insights:
    - The dataset covers 181 countries representing 100% of global GDP.
    - Suitable for data visualization dashboards, AI-driven economic forecasting, and educational research.

    ๐Ÿ’ก Example Use-Cases

    • Build a choropleth map showing GDP distribution across continents.
    • Train a regression model to predict GDP per capita based on population and growth.
    • Compare economic inequality using population vs GDP share.

    ๐Ÿ“š Dataset Citation

    Source: Worldometers โ€” GDP by Country (2024)
    Dataset compiled and cleaned by: Asadullah Shehbaz
    For open research and data analysis.

  3. T

    GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 29, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/gdp
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jun 29, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  4. T

    GDP by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=america
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 30, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. List of Countries by GDP Sector Composition

    • kaggle.com
    zip
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Kumar Pandey (2023). List of Countries by GDP Sector Composition [Dataset]. https://www.kaggle.com/datasets/rajkumarpandey02/list-of-countries-by-gdp-sector-composition
    Explore at:
    zip(8122 bytes)Available download formats
    Dataset updated
    Mar 20, 2023
    Authors
    Raj Kumar Pandey
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    CONTENT

    The figures are based on GDP (Nominal) and sector composition ratios provided by the CIA World Fact Book. Agriculture includes farming, fishing, and forestry. Industry includes mining, manufacturing, energy production, and construction. Services cover government activities, communications, transportation, finance, and all other private economic activities that do not produce material goods.

    CONTEXT

    • Agriculture Sector : Agriculture Sector contributes 6.4 percent of total world's economic production. Total production of sector is $5,084,800 million. China is the largest contributer followed by India. China and India accounts for 19.49 and 7.39 percent of total global agricultural output. World's largest economy United States is at third place. Next in line come Brazil and Indonesia

    • **Industry Sector : **With GDP of $23,835 billion, Industry Sector holds a share of 30% of total GDP nominal. China is the largest contributor followed by US. Japan is at 3rd and Germany is at 4th place. These four countries contributes 45.84 of total global industrial output.

    • Services Sector : Services sector is the largest sector of the world as 63 percent of total global wealth comes from services sector. United States is the largest producer of services sector with around 15.53 trillion USD. Services sector is the leading sector in 201 countries/economies. 30 countries receive more than 80 percent of their GDP from services sector. Chad has lowest 27% contribution by services sector in its economy.

  6. T

    GDP by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Nov 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). GDP by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=asia
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Nov 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. GDP ranking

    • datacatalog.worldbank.org
    csv, excel, pdf
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Development Indicators, The World Bank, GDP ranking [Dataset]. https://datacatalog.worldbank.org/search/dataset/0038130/gdp-ranking
    Explore at:
    pdf, excel, csvAvailable download formats
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Description

    Gross domestic product ranking table.

  8. k

    World Competitiveness Ranking based on Criteria

    • datasource.kapsarc.org
    • data.kapsarc.org
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). World Competitiveness Ranking based on Criteria [Dataset]. https://datasource.kapsarc.org/explore/dataset/world-competitiveness-ranking-based-on-criteria-2016/
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Explore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.

    Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings

    Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela

    Follow data.kapsarc.org for timely data to advance energy economics research.

  9. T

    GDP by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=europe
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    May 30, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. World Bank GDP by Country and Continent(2000โ€“2025)

    • kaggle.com
    zip
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naveena Paleti (2025). World Bank GDP by Country and Continent(2000โ€“2025) [Dataset]. https://www.kaggle.com/datasets/naveenapaleti/world-bank-gdp-by-country-and-continent20002025
    Explore at:
    zip(26735 bytes)Available download formats
    Dataset updated
    Sep 24, 2025
    Authors
    Naveena Paleti
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    Context

    This dataset provides country-level GDP (Gross Domestic Product) in current US dollars from 2000 to 2025, mapped to the seven classic continents (Asia, Africa, Europe, North America, South America, Australia, and Antarctica). It is designed to make global economic data easier to explore, compare, and visualize by combining both geographic and temporal dimensions.

    GDP is one of the most widely used indicators to measure the size of an economy, its growth trends, and relative economic performance across regions.

    Source

    Data Provider: World Bank Open Data

    Indicator Used: NY.GDP.MKTP.CD โ†’ GDP (current US$)

    License: World Bank Dataset Terms of Use (aligned with CC BY 4.0)

    Note: 2024โ€“2025 values may be incomplete or missing for some countries, depending on World Bank publication updates.

    Dataset Structure

    Name of country โ†’ Country name

    Continent โ†’ One of the 7 continents

    2000โ€“2025 โ†’ GDP values in current US$ (float, may contain missing values NaN)

    Format: wide panel data (one row per country, one column per year).

    Inspiration & Use Cases

    This dataset was prepared to make economic analysis, visualization, and forecasting more accessible. It can be used for:

    • Time-series forecasting (predicting GDP growth into the future)
    • Cross-country comparisons (e.g., comparing GDP trends of India vs. USA vs. Brazil)
    • Continent-level aggregation (summing GDP by continent per year)
    • Data visualization (heatmaps, line charts, world choropleths)
    • Machine Learning applications (e.g., clustering countries by GDP trajectory)

    Citation

    If you use this dataset, please cite:

    Source: World Bank, World Development Indicators (NY.GDP.MKTP.CD). Licensed under the World Bank Terms of Use.

  11. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Authors
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  12. T

    CURRENT ACCOUNT TO GDP by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2011). CURRENT ACCOUNT TO GDP by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/current-account-to-gdp
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jul 6, 2011
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CURRENT ACCOUNT TO GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  13. Macro-Economic Indicators Dataset (Country-Level)

    • kaggle.com
    zip
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vesela Gencheva (2025). Macro-Economic Indicators Dataset (Country-Level) [Dataset]. https://www.kaggle.com/datasets/veselagencheva/macro-economic-indicators-dataset-country-level
    Explore at:
    zip(10693 bytes)Available download formats
    Dataset updated
    Mar 9, 2025
    Authors
    Vesela Gencheva
    Description

    This dataset provides a comprehensive view of global economic trends, combining multiple essential indicators for analysis and research. The data focuses on the period from 2020 to 2023 and includes two key components:

    1. GDP Per Capita and Inflation (2020โ€“2023)

    Scope: Yearly GDP per capita (in USD) and inflation rates per countries over the four-year period.

    1. Population (2023)

    Scope: The total population of each country at the end of 2023.

    The dataset is meticulously compiled from trusted sources:

    GDP per capita and inflation data are sourced from the World Bank national accounts data and OECD National Accounts data files.

    Population data is derived from the World Bank Data Catalog (Population Ranking).

    Potential Applications

    Analyze the impact of inflation on economic growth during and after the pandemic.

    Examine relationships between GDP per capita and population size.

    Compare economic indicators across countries and regions.

    Key Features: Clean, structured, and ready-to-use format.

    Country-level granularity for detailed comparisons.

    Suitable for trend analysis, visualizations, and predictive modeling.

    Licensing: This dataset is licensed under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. You are free to copy, modify, and distribute the data for any purpose, including commercial use, as long as appropriate credit is given to the World Bank.

  14. International Macroeconomic Data Set

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). International Macroeconomic Data Set [Dataset]. https://catalog.data.gov/dataset/international-macroeconomic-data-set
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Description

    The International Macroeconomic Data Set provides data from 1969 through 2030 for real (adjusted for inflation) gross domestic product (GDP), population, real exchange rates, and other variables for the 190 countries and 34 regions that are most important for U.S. agricultural trade. The data presented here are a key component of the USDA Baseline projections process, and can be used as a benchmark for analyzing the impacts of U.S. and global macroeconomic shocks.

  15. b

    Getting Credit, Ranking of Economy, 2017

    • bonndata.uni-bonn.de
    • resodate.org
    csv, jpeg, pdf, png +2
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Basukala; Amit Kumar Basukala (2023). Getting Credit, Ranking of Economy, 2017 [Dataset]. http://doi.org/10.60507/FK2/7P8NNS
    Explore at:
    xml(30565), png(6049), jpeg(65142), pdf(70152), txt(280), csv(4814)Available download formats
    Dataset updated
    Sep 18, 2023
    Dataset provided by
    bonndata
    Authors
    Amit Kumar Basukala; Amit Kumar Basukala
    License

    https://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/7P8NNShttps://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/7P8NNS

    Time period covered
    Jan 1, 2017 - Jul 31, 2017
    Area covered
    World, getting credit, ranking of economy
    Description

    Economies are ranked on their ease of doing business, from 1โ€“186. A high ease of doing business ranking means the regulatory environment is more conducive to the starting and operation of a local firm. The rankings are determined by sorting the aggregate distance to frontier scores on 10 topics, each consisting of several indicators, giving equal weight to each topic. The rankings for all economies are benchmarked to June 2017. Quality/Lineage: The data is downloaded from the above link http://www.doingbusiness.org/rankings and manipulated only table format keeping the value same for all the countries as the requirement of the Strive database. The map is created based on the values of the country using rworldmap package in R.

  16. T

    LEADING ECONOMIC INDEX by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 22, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2014). LEADING ECONOMIC INDEX by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/leading-economic-index
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Aug 22, 2014
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for LEADING ECONOMIC INDEX reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. w

    The Global Findex Database 2025: Connectivity and Financial Inclusion in the...

    • microdata.worldbank.org
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2025). The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy - Pakistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/7961
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2024
    Area covered
    Pakistan
    Description

    Abstract

    The Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.

    The Global Findex is the worldโ€™s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.

    The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.

    Geographic coverage

    National Coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.

    In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.

    Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewerโ€™s gender.

    In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.

    The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.

    Research instrument

    The English version of the questionnaire is provided for download.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.

  18. b

    Ease of Doing Business, Ranking of Economy, 2017

    • bonndata.uni-bonn.de
    • resodate.org
    csv, jpeg, pdf, png +2
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Basukala; Amit Kumar Basukala (2023). Ease of Doing Business, Ranking of Economy, 2017 [Dataset]. http://doi.org/10.60507/FK2/W96ZW2
    Explore at:
    xml(30531), csv(4833), jpeg(67305), txt(297), pdf(73535), png(6049)Available download formats
    Dataset updated
    Sep 18, 2023
    Dataset provided by
    bonndata
    Authors
    Amit Kumar Basukala; Amit Kumar Basukala
    License

    https://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/W96ZW2https://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/W96ZW2

    Time period covered
    Jan 1, 2017 - Jul 31, 2017
    Area covered
    World
    Description

    Economies are ranked on their ease of doing business, from 1โ€“190. A high ease of doing business ranking means the regulatory environment is more conducive to the starting and operation of a local firm. The rankings are determined by sorting the aggregate distance to frontier scores on 10 topics, each consisting of several indicators, giving equal weight to each topic. The rankings for all economies are benchmarked to June 2017. Quality/Lineage: The data is downloaded from the above link http://www.doingbusiness.org/rankings and manipulated only table format keeping the value same for all the countries as the requirement of the Strive database. The map is created based on the values of the country using rworldmap package in R.

  19. GDP-BY-COUNTRY-2022

    • kaggle.com
    zip
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muneeb_Qureshi3131 (2024). GDP-BY-COUNTRY-2022 [Dataset]. https://www.kaggle.com/datasets/muneebqureshi3131/gdp-by-country/code
    Explore at:
    zip(6044 bytes)Available download formats
    Dataset updated
    Oct 24, 2024
    Authors
    Muneeb_Qureshi3131
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.

    Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.

  20. b

    Trading across Borders, Ranking of Economy, 2017

    • bonndata.uni-bonn.de
    • resodate.org
    • +1more
    csv, jpeg, pdf, png +2
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Basukala; Amit Kumar Basukala (2023). Trading across Borders, Ranking of Economy, 2017 [Dataset]. http://doi.org/10.60507/FK2/NYUDC3
    Explore at:
    csv(4822), xml(30411), pdf(70109), txt(288), png(6049), jpeg(64833)Available download formats
    Dataset updated
    Sep 18, 2023
    Dataset provided by
    bonndata
    Authors
    Amit Kumar Basukala; Amit Kumar Basukala
    License

    https://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/NYUDC3https://bonndata.uni-bonn.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.60507/FK2/NYUDC3

    Time period covered
    Jan 1, 2017 - Dec 31, 2017
    Area covered
    World
    Description

    Economies are ranked on their ease of doing business, from 1โ€“186. A high ease of doing business ranking means the regulatory environment is more conducive to the starting and operation of a local firm. The rankings are determined by sorting the aggregate distance to frontier scores on 10 topics, each consisting of several indicators, giving equal weight to each topic. The rankings for all economies are benchmarked to June 2017. Quality/Lineage: The data is downloaded from the above link http://www.doingbusiness.org/rankings and manipulated only table format keeping the value same for all the countries as the requirement of the Strive database. The map is created based on the values of the country using rworldmap package in R.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shuv๐Ÿ˜ˆ (2023). Rankings of Countries Dataset [Dataset]. https://www.kaggle.com/datasets/shuvammandal121/global-country-rankings-dataset
Organization logo

Rankings of Countries Dataset

Exploring the Socioeconomic Landscape: A Ranking of Countries based on GDP

Explore at:
zip(11539 bytes)Available download formats
Dataset updated
Jul 17, 2023
Authors
Shuv๐Ÿ˜ˆ
Description

Content

The "Global Country Rankings Dataset" is a comprehensive collection of metrics and indicators that ranks countries worldwide based on their socioeconomic performance. This datasets are providing valuable insights into the relative standings of nations in terms of key factors such as GDP per capita, economic growth, and various other relevant criteria.

Researchers, analysts, and policymakers can leverage this dataset to gain a deeper understanding of the global economic landscape and track the progress of countries over time. The dataset covers a wide range of metrics, including but not limited to:

Economic growth: the rate of change of real GDP- Country rankings: The average for 2021 based on 184 countries was 5.26 percent.The highest value was in the Maldives: 41.75 percent and the lowest value was in Afghanistan: -20.74 percent. The indicator is available from 1961 to 2021.

GDP per capita, Purchasing Power Parity - Country rankings: The average for 2021 based on 182 countries was 21283.21 U.S. dollars.The highest value was in Luxembourg: 115683.49 U.S. dollars and the lowest value was in Burundi: 705.03 U.S. dollars. The indicator is available from 1990 to 2021.

GDP per capita, current U.S. dollars - Country rankings: The average for 2021 based on 186 countries was 17937.03 U.S. dollars.The highest value was in Monaco: 234315.45 U.S. dollars and the lowest value was in Burundi: 221.48 U.S. dollars. The indicator is available from 1960 to 2021.

GDP per capita, constant 2010 dollars - Country rankings: The average for 2021 based on 184 countries was 15605.8 U.S. dollars.The highest value was in Monaco: 204190.16 U.S. dollars and the lowest value was in Burundi: 261.02 U.S. dollars. The indicator is available from 1960 to 2021.

source: https://www.theglobaleconomy.com/

Search
Clear search
Close search
Google apps
Main menu